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Abstract—With the explosively-growing scale and heterogene-
ity of data, the legacy deduplication storage systems face more
stern challenges in achieving high deduplication ratios and
low overheads because these systems can remove redundancy
successfully only if the fingerprint of an incoming data chunk
perfectly matches the existing ones in the depository.

In the paper, we present BURST, a novel online chunk-based
data deduplication system, towards a more general scenario
wherein an incoming chunk best matches one of the existing
chunks by a short burst. BURST proposes a new scheme that
creates head and tail fingerprints of each chunk and efficient
delta burst deduplication designs to provide superior data re-
duction to the legacy deduplication systems and incur no CPU
overhead. We implement and evaluate our open-sourced BURST
in the practical storage platform, OpenZFS, whose full-blown
production features render BURST ready to be deployed in real
storage systems. The evaluations prove that BURST consistently
achieves higher data reduction than the legacy approach in all
datasets while achieving up to 2.06 × optimization. BURST can
achieve higher data reduction as the legacy deduplication using
a much larger (average) chunk size (4KB→16KB), rendering
higher performance and lower system cost.

Index Terms—file system, data deduplication, chunk-based
storage, burst-encoded, fingerprint matching

I. INTRODUCTION

As the global volume of data continues its exponential
growth, with estimates projecting an increase from the current
64.2 to over 180 zettabytes by 2025 [1], the challenges
associated with managing this surge in data have become a
focal point for modern cloud infrastructures. The escalating
data landscape is a primary contributor to the complexities
of storage management in today’s digital age. To address
these challenges, various storage optimization technologies
have been widely embraced, including compression, thin pro-
visioning, space-efficient snapshot technology, and the latest
advancements in deduplication technologies (e.g., [2]–[6]).

Deduplication, in particular, has been a central focus of
research for an extended period. Numerous studies in the field
have successfully demonstrated its efficacy in reducing storage
space by eliminating duplicate data in disk storage I/O [3], [4],
[7]–[10], while some deduplication techniques have proven
effective in minimizing redundant data transmission in network
environments [7], [11]–[14]. Moreover, recent innovations in
deduplication techniques have extended their applications to
enhance the longevity of flash mediums [15], [16].

The legacy deduplication systems are usually based on
chunk-level data deduplication, which is highly performance-
critical and deduplication-efficient to the chunk size choices
and fingerprint computation designs. Typically, a chunk-level
deduplication system splits the input data stream (e.g., backup
files, program archives, virtual machine images) into multiple
data chunks. Each chunk is uniquely identified and discerned
through the application of a cryptographically-secure hash
signature, commonly known as a fingerprint [7], [17], such as
SHA-1 or SHA-2 [18]. The chunk size can be fixed like file
blocks or variable-sized units determined by the data content.
For example, fixed-size chunks (interchangeably, block) have
been widely adopted in modern primary deduplication storage
systems [3], [4], [9], where maintaining low latency is one
of the most critical design goals. Moreover, most mainstream
file systems generate blocks with a fixed length, often set
at 4K-Bytes, with an upcoming transition to a 16K-Byte
length. In contrast, the prevalent variable-length segmenting
approach is through computing Rabin-fingerprint [19] for each
sliding window of data bytes and to set chunk boundary when
the associated Rabin-fingerprint meets certain criteria, e.g., a
number of least significant bits are all zeros [20]. However, the
existing variable-length segmenting methods usually compute
certain metric over a consecutive number of bytes associated
with each byte (e.g., [20]–[22]), which is computationally
costly as the number of computed fingerprints is as large as
the data length, for example, in Rabin-fingerprint segmenting.
Therefore, how to achieve a promising deduplication ratio and
low overhead for the more widely used fixed-length chunk
systems remains a significant challenge in data deduplication
research.

In this paper, we introduce a generalization of the tradi-
tional perfectly matched chunk deduplication to imperfectly-
matched deduplication, where the delta between similar
chunks can be characterized as a short burst. Typically, a
delta burst is defined as the replacement of an interval of
data (potentially NULL) with a new interval of data (also
potentially NULL), and the replacement can be the deletion
or insertion of an interval of data, or the substitution of an
interval of data with a new interval of possibly different
length. The motivation for this generalization stems from our
observations of revision locality. Specifically, when revising
an old version of a file, edits tend to occur in bursts, meaning



that if one byte is modified, its neighboring bytes are likely
to be modified as well. While a revised file may contain
multiple bursts, we reasonably assume that each partitioned
data chunk may contain up to one burst of revision. Our chunk-
level burst hypothesis can also be viewed as a deduction from
the extensively researched file-level sparse delta hypothesis in
terms of delta encoding [23], [24]. It is essential to note that
two burst-alike chunks may differ in their lengths, in contrast
to scenarios involving identical chunks. Subsequently, we
present BURST, a novel burst-encoded deduplication method.
BURST efficiently identifies a delta burst from existing data
chunks by creating two additional key-value tables: the head
fingerprint and tail fingerprint, associated with the head and
tail of the data chunk, respectively. Through extensive eval-
uations, we demonstrate that the proposed BURST method
is particularly advantageous when dealing with large chunk
sizes. In summary, this paper mainly makes the following
contributions.
1) We investigate deduplication on imperfectly matched data

chunks, and particularly characterize the delta as a single
burst based on real data characteristics.

2) We present BURST, a novel chunk-based deduplication
system with a burst-encoded fingerprint matching. BURST
efficiently identifies a delta burst from existing data chunks
through creating head fingerprint and tail fingerprint in
associated with the head and tail of data chunk respectively.
Notably, by selecting a small number of head and tail bytes
as their respective fingerprints, this approach incurs no
additional CPU overhead compared to the legacy method.

3) We implement the BURST system prototype 1 based on
the open-source storage platform OpenZFS [25] . The
wide popularity of OpenZFS along with its full-blown
production feature set renders the build-in BURST ready
to be deployed in the real storage systems.

4) Our evaluations reveal several key advantages of BURST
over traditional deduplication methods. BURST consis-
tently outperforms the legacy method in deduplication
ratios across all datasets (up to 2.06 ×), with the larger
dataset exhibiting a more pronounced gap. Moreover,
BURST demonstrates superior data reduction with a 16KB
chunk size, surpassing the performance of the legacy
method with a 4KB chunk size, which not only enhances
overall performance but also reduces system costs.

The rest of this paper is organized as follows. Section II
provides a comprehensive exploration of the observations and
characterizations of bursty delta at the chunk level. Section
III details the design of the BURST deduplication framework.
Section IV outlines the integration of the proposed BURST
into the widely used open-source platform, OpenZFS. Section
V presents the evaluation results derived from various datasets,
showcasing the effectiveness of the BURST framework. Sec-
tion VI includes the technical discussions and future works
about BURST. Section VII conducts a survey of related works
in the field. Finally, Section VIII concludes the paper.

1Open-sourced at https://github.com/old-memories/zfs/tree/burst-dedup

II. BACKGROUND AND MOTIVATIONS

Legacy deduplication systems grapple with a crucial trade-
off between data reduction and performance when deciding
between a fixed or variable average chunk size. It is evident
that smaller chunks lead to a more effective recognition of
duplicate chunks, resulting in a superior deduplication ratio.
However, the utilization of smaller chunks in deduplication
systems introduces challenges. Systems employing smaller
chunks must contend with processing a higher number of
chunks during each deduplication loop, thereby diminishing
the data I/O performance of the storage system. Furthermore,
the use of smaller chunks necessitates larger storage footprints
for their metadata, as a reduced amount of total user bytes
can be cached in a given amount of memory. This situation
leads to an increased number of updates to the chunk index.
It is important to acknowledge that any data structure scaling
with the number of chunks imposes limitations on the overall
capacity of the storage system when smaller chunks are
employed. Considering the typical constraints of commodity
servers with limited physical memory resources, the (average)
chunk size becomes a significant factor influencing the cost of
the system. In essence, while a smaller (average) chunk size
may yield gains in data reduction, it concurrently incurs losses
in terms of performance, capacity, and overall system cost.

The individual files are represented as backup images
consisting of a large number of component files in backup
systems, . Successive backups of the same file system rarely
result in entirely identical files, as even a single addition,
deletion, or modification of content can swiftly alter the entire
image composition. To address this, content-based chunking
has been employed to preserve identical chunks despite shifts
in content. However, in legacy deduplication, the challenge
arises when storing entire chunks for those cases where shifts
or modifications occur, regardless of the magnitude of the
change or delta. It is evident that in legacy deduplication,
larger (average) chunk sizes lead to poorer data reduction, as
a higher percentage of chunks are affected by these changes.
Conversely, if an effective mechanism is in place to identify
and store these deltas, the amount of deduplicated data remains
unchanged even with larger chunk sizes.

To examine the delta characteristics within real-world
datasets, we crawl HTML, JS, and CSS files from a news
website using Httrack [26], creating an archival dataset as a
typical representative of cloud computing workloads. Many
HTML files within this dataset share similar structures as
they are constructed from templates. The archival dataset was
divided into 4KB, 8KB, or 16KB chunks. We conducted a
comparative analysis by assessing the content of each chunk
against the content of all other chunks to identify the closest
match in terms of the shortest burst length. In our analysis, we
consider the delta or difference between two chunks as a single
burst. Therefore, our measurement focuses on burst length
rather than Hamming distance (i.e., the number of different
bytes). Figure 1 illustrates the distribution of burst lengths
among similar chunks within the dataset, where ’0’ denotes
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Fig. 1. The length distribution of the delta contents in the web archival.

a burst length of zero, signifying a perfect match. The figure
reveals three discernible trends as chunk size increases. (1)
The percentage of perfectly deduplicated chunks decreases.
When the chunk length is 16KB, there is no perfectly matched
block. (2) The percentage of imperfectly deduplicated chunks
increases. As the chunk length increases from 4KB to 16KB,
the percentage of imperfectly-matched chunks increase from
less than half to all. (3) The percentage of imperfectly-matched
chunks with a burst length not exceeding 1/4 of the chunk
length increases among all the imperfectly-matched chunks.
For instance, with the chunk size as 16KB, 56% of burst
lengths are smaller than 4KB.

Hence, it is reasonable to define the delta between the two
most similar chunks as a short burst. Building upon these
insightful observations and characterizations, the next section
endeavors to introduce an innovative burst-encoded chunk-
based deduplication framework. This framework is designed
to efficiently identify and store short bursts, resulting from
minor changes, in incoming data chunks. The ultimate goal
is to preserve data reduction benefits even when dealing with
significantly larger chunk sizes.

III. BURST DESIGN

A. Terminologies for Deduplication System

As BURST is a novel design of burst encoded deduplication
framework for storage and file systems, we first introduce
the following terminologies to facilitate a concise description
of BURST’s write, read, and delete procedures, where an
uppercase letter represents a vector, and a lowercase letter
denotes a scalar.

Deduplication Ratio (dedup-ratio) is defined as the ratio
of the data size of pre-deduplication over the size of post-
deduplication. For example, if there are two identical 4KB
chunks and another 4KB chunk with different content, then
the deduplication results in dedup-ratio= 4KB∗3

4KB∗2 = 1.5.
Data Chunk (D) represents a chunked raw data vector,

whereas a Data Block (B) is a data structure which includes
a data chunk and its metadata, such as physical block address,
size, modified time, fingerprint, etc.. In the sequel, “block size”
is used interchangeably as “chunk size”.

Logical Block Address (LBA), denoted by l, is provided
by most storage systems for upper applications to reference
each data block. Applications only need to address a specific
LBA in order to read or write the corresponding data block.
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Fig. 2. An example of legacy deduplication process.

In Linux, filesystems utilizes a specific inference to an inode
and it may refer to many blocks.

Physical Block Address (PBA), denoted by p, is used to
address data chunks in storage devices. The read procedure
requires a PBA to read one specific block while the write
procedure returns a PBA addressing the data chunk allocated
and stored in storage devices. A storage system maintains an
LBA table which maps LBA to PBA. For conciseness, we
shall omit this table in the subsequent algorithmic procedures.

Fingerprint (f ) (empirically unique) identifies a data chunk
which is usually a log number or string generated by checksum
algorithms. There are two types of fingerprints, namely, weak
and strong. When strong fingerprint (e.g., SHA-1, SHA-2) is
applied, two blocks with identical fingerprints are safeguarded
to be identical (noting the probability of data collision is way
below storage failure tolerance). On the other hand, when
weak fingerprint (e.g., CRC, or ECC parity) is applied, the
probability of two different blocks with identical fingerprint
can no longer be neglected. Therefore, two data chunks must
be read and matched byte-wise if two weak fingerprints are
matched (e.g. [16], [27]). In our context, we will focus on
strong fingerprint for conciseness.

Reference Counter (c) records the deduplication times
of a data block. When a block is successfully deduplicated,
the counter increases by 1; When a deduplicated block is
deleted, the counter decreases by 1. When it becomes 0, the
corresponding data block is set to be erased from the device.

Deduplication Table (DT) refers to a key-value table
containing multiple entries dte

△
= {f, p, c}. We use dter to

define a DT entry which is referenced and used to deduplicate
a incoming data chunk.

We use Figure 2 with the interaction among the previous
terminologies to illustrate the flow of a deduplication write
procedure in the legacy data deduplication system, which
usually utilizes a deduplication table (DT) which maps each
unique fingerprint (f ) to its PBA (p) in conjunction with a
reference counter (c).

B. Burst-Encoded Deduplication Methodology

Since BURST is a novel burst-encoded chunk-based data
deduplication framework, we first formally define the data
burst and basic interaction between the data chunks and bursts.

A burst is denoted by β, as constituted by three elements,

β
△
= {[start, end); data}, (1)
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Fig. 3. Three types of bursts between burst-alike blocks.

where start and end respectively denotes the starting and
ending index of the incurred burst revision respectively, and
data denote the substitute burst data. Note that the ending
index is exclusive.

We give a few examples to clarify the burst definition in
Figure 3. β1 = {2, 5,′ d′} represents that an incoming chunk
replaces the three bytes of reference at positions 2-4 with one
bytes ‘d’ (at the reference chunk location 4); β2 = {3, 9, ∅}
represents that an incoming chunk deletes six bytes at its
reference chunk’s indexes 3-8; β3 = {3, 3,′ l′} represents that
an incoming chunk inserts one byte ‘l’ at reference chunk
position 4.

We introduce a pre-length and a post-length concept when
we want to discuss the length of a burst. The pre-length
len−(β) is defined by

len−(β)
△
= β.end− β.start, (2)

which represents the length of data affected by the new burst.
and the post-length len+(β) is given by

len+(β)
△
= len(β.data), (3)

which represents the actual length of the new incoming burst.
From Figure 1, we can find that over 50% of the burst has

a post-length less than 1/4 of the size of the original chunk
B, that is

len+(β) ≤ B.size

4
. (4)

Specifically, len−(β) = 0 indicates that the new burst is
inserted right after β.start, and len+(β) = 0 indicates that
original data in the interval [β.start, β.end) is deleted.

Based on the burst concept, we define that data chunk D1

and D2 are burst-alike if we can use a short burst β to update
D1 to D2. Since the BURST deduplication system is designed
towards a more general scenario wherein an incoming chunk
best matches one of the existing chunks by a short burst.
In order to get shorter and more accurate bursts between
different data chunk in the chunk-based deduplication systems,
we partition a chunk D into three sub-chunks,

D = [Dh, Dc, Dt], (5)

where Dh, Dc, Dt refers to the head, center, tail sub-chunk,
respectively. We set the lengths of Dh, Dt equal and prefixed
for all chunks, denoted by τ . The following theorem lays out
the foundation of burst detection.

Theorem 1: Let an incoming data chunk D be a bursty
revision, given by β, of a reference chunk D̄ such that the
pre-burst length satisfies

len−(β) ≤ len(D)− 2τ. (6)

Then, either their head sub-chunks or tail sub-chunks are
identical, i.e.,

Dh = D̄h, or Dt = D̄t. (7)

Proof: If the burst does not occur in the head sub-chunk,
then apparently Dh = D̄h. Now assume the burst occurs in the
head sub-chunk. Note the end burst index is bounded by τ−1+
(len(D)−2τ) = len(D)−τ−1, by assuming the longest burst
starts at the last byte of head sub-chunk. Therefore, the burst
does not overlap with the tail sub-chunk, yielding Dt = D̄t.

The above theorem indicates that a strong head finger-
print and tail fingerprint can be deployed to effectively
identify burst-alike chunks in a large system, as extensively
deployed in legacy deduplication systems. Accordingly, We
compute two fingerprints respectively: head fingerprint: fh =
checksum(Dh) and tail fingerprint: ft = checksum(Dt),
through one checksum algorithm such as SHA-2.

The choice of the head (tail) sub-chunk length, τ , must
take into account of the following constraints. (1) τ must be
smaller than half of minimum chunk length; (2) τ must be
no shorter than the length of strong fingerprint, for example,
SHA-2; (3) τ is proportional to the computational cost of two
fingerprints. Therefore, in a specific case where we choose
SHA-2 as checksum algorithm and set the size of a fingerprint
as 32B, we can set τ as 32B and let head (and tail) fingerprints
be the data of head (and tail) sub-chunks to help eliminate
extra CPU overhead over the legacy design.

We use HeadDT (TailDT) to define the head (tail) dedu-
plication table. The entry in HeadDT (TailDT) is denoted by
head-dte (tail-dte), contains a head (tail) fingerprint, address
of its chunk’s dt in DT and a counter(c). A block B is the
main data structure for read and write requests which contains
a data chunk (data, or D), a fingerprint (f ), a PBA (p, maybe
NULL), its size (size), type (type, such as ‘burst‘) and other
attributes not related to deduplication. Mathematically,

B
△
= {D, f, p, size, type}. (8)

C. Deduplication FS Interfaces

1) BURST Write: Figure 4 shows an example that roughly
illustrates the steps of detecting and writing a burst-alike
block with respect to its reference block. For simplicity it
only shows operations on the head sub-chunk. In our BURST
design, the above operations are carried out on head and
tail sub-chunks respectively. We describe each step of the
write operations in detail. BURST first computes the head
fingerprint fh and search fh in HeadDT. In this example,
BURST gets one matched head-dte related to a unique block
(”bandage”) written to storage devices before. While writing
this unique block, new entries for DT, HeadDT and TailDT
are created and inserted, respectively. Algorithm 1 describes
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how to write a unique block. The writeDev() function, whose
input parameter is a data block (B) and return value is a PBA
(p), serves as the write interface provided by storage devices.

Algorithm 1: Write a unique Block

1 void writeUniqueBlock(B, DT, HeadDT, TailDT)
2 begin
3 B.p← writeDev(B) ;

// write to physical devices
4 dte← {B.f,B.p, 1} ;
5 insertEntry (DT, dte.f, dte) ;
6 head-dte← {B.fh, dte, 1} ;
7 insertEntry(HeadDT, head-dte.f, head-dte) ;
8 tail-dte← {B.ft, dte, 1} ;
9 insertEntry(TailDT, tail-dte.f, tail-dte) ;

10 void insertEntry(T, key, entry);

We can find that the two block have the same heads (“ba”)
in this example. We call this original unique block with
“bandage” as the reference block of this burst-alike block
“badge”. A head-dte entry that contains address of the dter
related to the reference block will be insert into HeadDT.
Then, we increase the reference counter c of reference dtr
and head-dte to record this match. Besides, we mark the type
of the burst-alike block as ’burst’ to distinguish it from unique
blocks. Next we issue a read request to get the entire chunk
addressed by PBA(p) in that dtr. As soon as the read request
completes, we create a burst (β1 = {2, 5,′ d′}). Then we
replace original data chunk (”badge”) by β1(′d′) and issue a
new write request to storage devices. Size of a β is in units of
hundred bytes while the size of the original data chunk could
be 4KB size so we achieve higher deduplication ratio. After
the lower layer returns one PBA(p) addressing β1, we create
a new burst entry (bte) and insert it into a burst table (BT),
which is a deduplication table data structure similar with DT,
HeadDT, and TailDT. A bte includes B1’s fingerprint, PBA
(p) returned before, address of dtr and a counter (c).

We further discuss two interesting corner cases where metic-
ulously handling them enables to achieve higher deduplication
ratio and throughput.

The first case is to write a new block B2 which has the same

data content to a burst-alike block B1 already written to stor-
age devices. We prefer to perfectly deduplicate B2 instead of
BURST deduplicating this block. As the legacy deduplication
method does, We additionally search key f2 = checksum(B2)
in the BT table while writing B2. Then we find one BT table
entry bte related to B1. Therefore B2 is perfectly deduplicated
and we increase c of the corresponding bte by 1.

The second case is that two burst-alike blocks sharing
the same reference block. It happens while writing multiple
versions of a file and two new versions are forked from one
original version. If we allow too many burst-alike blocks to
share the same reference block, the deduplication ratio is
lower but write latency is higher because more read requests
for reference block are required. Therefore, we note that the
number of burst-alike blocks which share the same reference
block is related to a trade-off between deduplication ratio and
I/O throughput. We design reference counters ch, ct (initialized
to 1) for head-dte and tail-dte, respectively, and check whether
it exceeds a maximum counter parameter (c max). If it
exceeds c max, we stop deduplication and the burst-alike
block is viewed as a unique-block. The parameter choices of
c max will be discussed in the evaluation section again.

Algorithm 2 describes the algorithmic procedure about how
BURST write a burst-alike block. We use XDT (x-dte) refers
to either HeadDT (head-dte) or TailDT (tail-dte) when writing
a burst-alike block. The ReadDev function, whose input
parameter is a PBA (p) and return value is a block data
structure (B), serves as the read interface provided by storage
devices. Note that we do not create a dte for a burst-alike
block as a unique block. If we do so, there could be nested
relationships between blocks. This may lead to high write
latency because three read requests have to be issued for a
“three-depth” burst-alike block. Besides, it brings additional
complexity for implementation.

Algorithm 2: Write A Burst-Alike Block

1 void writeAlikeBlock(B, XDT, BT,x-dte)
2 begin
3 if x-dte.c ≤ c max then
4 writeBurst(B, x-dte,BT) ;

5 return
6 void writeBurst(B, x-dte,BT)
7 begin
8 x-dte.c++ ;
9 x-dte.dtr.cc++ ;

10 B.type← ‘burst’ ;
11 Br ← readDev(x-dte.dtr.p) ;
12 β ← makeBurst(B.data,Br.data) ;
13 B.data← β ;
14 B.p← writeDev(B) ;
15 bt← {B.f, B.p, x-dte.dtr, 1} ;
16 insertEntry(BT, bte.f, bte) ;

Herein we give an example to elaborate the second case. As-
sume we set lengths of head and tail(τ ) to len(D)

4 and c max



to 1. Block Br =′ hhaaaaaa′ is a unique block already
written to storage devices. black We are now going to write
block B1 =′ hhbbbbbb′. We find B1 is burst-alike toward Br

after searching in HeadDT and there is β = {2, 8,′ bbbbbb′}.
Therefore the reference counter head − dte.c related to Br

increase by 1. Assume another write block is B2 =′ hhcccccc′.
We find B2 is burst-alike to Br too, after searching HeadDT,
but head-dte.c related to Br exceeds c max. So we give
up creating another burst but directly write the original data
chunk into storage devices. Accordingly, we create new entries
head-dte and tail-dte referring to B2 and reset their reference
counters to 0 (note head-dte previously refers to Br). If the
next write block is B3 =′ hhdddddd′, it will find B2 its
reference block in HeadDT. Note that we do not lose the
relation between Br and B1 because a bte related to B1 keeps
it. Finally, we use Algorithm 3 to introduce the write procedure
of BURST deduplication system based on the previous burst
and block write interfaces.

Algorithm 3: BURST Write

1 void burst write(B)
2 begin
3 f ← Checksum(B.data, 0, B.size);
4 fh ← Checksum(B.data, 0, τ ) ;
5 ft ← Checksum(B.data,B.size− τ,B.size);
6 if dte←findEntry(DT, f) then
7 updateEntry(B, dte) ;
8 return
9 if bte← findEntry(BT, f) then

10 updateEntry(B, bte) ;
11 return
12 if head-dte← findEntry(HeadDT, fh) then
13 writeAlikeBlock(B,HeadDT,BT, head-dte) ;
14 return
15 writeUniqueBlock(B,DT,HeadDT,TailDT) ;

16 void UpdateEntry(B, entry)
17 begin
18 entry.c++ ;
19 B.p← entry.p ;

2) BURST Read: To read a block B, we first check its type,
which may be either ”burst” or ”unique”. If B is ”burst”,
we search its key f = checksum(B) in BT to obtain the
matched bt. This bte contains address of dte related to B’s
reference block, Br. Then we issue two read requests to
storage devices, one to read Br whose PBA is stored in the dte
and other to read β whose PBA is stored in B. After two read
requests complete, We reconstruct the original chunk of B by
patching β on Br. The complete read procedure is described
in Algorithm 4.

3) BURST Delete: To delete a block B, we first check its
type whether “unique” or “burst”, as the read procedure does.
For a burst-alike block, we search f = checksum(B) in BT
and decrease both counters of its bte and the reference block’s
dter by 1. Data chunk will be marked for deletion only when

either one of the two counter becomes zero. The complete
delete procedure is described in Algorithm 5.

Algorithm 4: BURST Read

1 void BURST Read(B)
2 begin
3 if B.type ==′ burst′ then
4 f ← B.f ;
5 bt← find(BT, f) ;
6 Br ← readDev(bt.dtr.p) ;
7 B ← readDev(B.p) ;
8 β ← B.data ;
9 B.data← makeChunk(Br.data, β) ;

10 else
11 B ← ReadDev(B.p)

Algorithm 5: BURST-Delete

1 void BURST Delete(B)
2 begin
3 f ← B.f ;
4 if B.type == “burst” then
5 bte← findEntry(BT, f) ;
6 dte← bte.dter ;
7 bte.c← bte.c− 1 ;
8 dte.c← dte.c− 1;
9 if bte.c == 0 then

10 free(B.p) ;

11 if dte.c == 0 then
12 free(dt.p) ;

13 else
14 dt← findEntry(DT, f) ;
15 dt.c−− ;
16 if dt.c == 0 then
17 free(B.p) ;

IV. BURST IMPLEMENTATION

In this section, we demonstrate how to implement our
proposed BURST deduplication framework on an open-source
storage platform, OpenZFS [25]. It includes the function-
ality of both traditional file systems and volume manager.
It gained tremendous popularity because of many advanced
and desirable features, including: (1). protection against data
corruption; (2). integrity checking for both data and metadata;
(3). Continuous integrity verification and automatic “self-
healing” repair; (4). support for high storage capacities — up
to 2128 bytes; (5). space-saving with transparent compression
using LZ4, GZIP or ZSTD; (6). hardware-accelerated native
encryption; (7). efficient storage with snapshots and copy-on-
write clones; (8). efficient local or remote replication.

ZFS supports multiple data chunk sizes such as 512B
(minimum), 1KB, 4KB, 16KB and 128KB (maximum). Users
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Fig. 5. BURST implementation on OpenZFS.

can choose one size through the command line. This means
block in ZFS are fixed-size. However, ZFS supports allocating
blocks with different sizes. Therefore, while writing a burst-
alike block, we are able to replace the original chunk by a
smaller burst. For example, when writing an incoming 4KB
block and a 120B burst is created, we roundup this 120B
burst data to 512B by padding zeros and write this 512B burst
instead of the original 4KB chunk.

ZFS is constituted with many subsystems. Herein we in-
troduce some important subsystems from top to bottom. ZFS
POSIX Layer implements some VFS (Virtual File System)
interfaces. We focus on vfs write, vfs read and vfs unlink
which are three primary operations on data deduplication.
Data Management Unit (DMU) transforms input data into
blocks which is prepared to be processed concurrently. ZIO
is the main layer in ZFS which computes the checksums and
deduplicated blocks. VDEV/RAIDZ is the lowest layer in ZFS
which allocates chunks and interacts storage drivers.

We proceed to describe our implementation of write, read
and delete procedures on ZIO layer of ZFS. For simplicity,
data is chunked into fixed-size blocks such as 4KB, 8KB
or 16KB. Figure 5(a) shows the BURST write procedure in
ZFS on writing a burst-alike block. After splitting input data
into blocks in DMU layer, ZIO layer handles these blocks
concurrently in five steps. These steps include computing
checksums, searching in deduplication tables, creating the
burst and writing burst to VDEV/RAIDZ layer.

To reduce the overhead of locking, we can use only one
mutex implemented as mutex lock in Linux kernel to lock
the corresponding entries in the multiple deduplication tables
(including DT, HeadDT, TailDT and BT) when operating
read or write accesses on specific data chunks. The ZIO layer
issues an asynchronous write request to VDEV/RAIDZ layer
while writing a unique block. Then, the address PBA (p) of it
is assigned in a callback function. Therefore, every incoming
block referring to this block is queued before the write request
completes. After the write request completes, we assign PBA
(p) for every block queued and increase c of dt.

One corner case happens when issuing a read request to
read the reference block for creating a new burst. If the

reference block has not been written to storage devices, we
choose to cancel this read request and skip deduplication.
Although this happens rarely thus resulting in a negligible
loss of deduplication, some tricky conditions(e.g. delete the
reference block when creating a burst) is avoided and the
worse-case latency is significantly shortened.

Figure 5(b) shows the BURST read procedure in ZFS while
reading a burst-alike block. Steps in ZIO layer include search-
ing in deduplication tables, reading burst-alike and reference
blocks from VDEV/RAIDZ layer and creating the original
chunk. The BURST delete procedure in ZFS decreases the
reference count c by 1 in BT and DT. When c becomes zero,
a unlink request is issued to VDEV/RAIDZ layer, indicating
the chunk is marked free for future reallocation.

V. EVALUATION

A. Experimental Setup

Experimental platform. We construct and implement our
method based on OpenZFS [25] (version 0.8.5) according to
the discussions in the Implementation Section shown before.
Our implementation adds about 500 lines of C code based
on the native OpenZFS which is compiled along with other
components under the default compilation configuration of
OpenZFS. In the following evaluations, to generate write and
read requests for OpenZFS, we use the “cp” command to
copy files of the datasets from a tmpfs directory to a zfs
directory. In this process, the tmpfs is adopted instead of a
disk filesystem(e.g. ext4) to avoid additional disk I/O latency.
Also, the following evaluations are configured to perform on a
single machine to simplify the complexity of the environment
deployment. Table I shows our detailed information of the
experimental platform.

TABLE I
CONFIGURATION OF THE EXPERIMENTAL PLATFORM.

CPU Intel Xeon E5-2680V2@2.80GHz
OS Ubuntu 18.04 64bit(Linux 4.15)

Memory 64GB
Disk Intel Optane 900P 480GB

Filesystem OpenZFS 0.8.5

Configurations for deduplication. The legacy fixed-size
chunk-based deduplication method is adopted as the baseline
for evaluating BURST deduplication, which has already been
implemented by OpenZFS. In legacy and BURST deduplica-
tion performance, block size is one relevant parameter, which
is set to 4KB, 8KB or 16KB for evaluation. In BURST
deduplication ,there are two more relevant parameters to set,
that is, size of head & tail and c max. We set head & tail
length (τ ) to a fixed value of 1/8 block and the actual value
should be changed with block size. c max is one parameter
shown in our design, which is set to 1, 3 or 255 (big enough
for our datasets) in the following evaluation.

Performance Metrics. I/O throughput, deduplication ra-
tio and utilization of CPU and Memory are the selected
performance metrics for the following evaluations. Through-
put of read and write is defined as Total Size

T ime , where
Total Size refers to the size of files in one dataset and



Time is measured by the “system time” section of the “time”
utility (not time command of bash), considering that our
code runs in the kernel. Deduplication ratio is defined as
Total Size Before Deduplication
Total Size After Deduplication . Since our implementation of

OpenZFS has already included the computation of dedupli-
cation ratio, so this metric can be recorded directly from the
command line. Also, CPU & Memory utilization is measured
by Linux tools including “Top”, “Perf” and “Slabtop” . We use
“Slabtop” to record the memory cost because deduplication
metadata is allocated by “kmem cache alloc” of Linux Slab
Allocator.

Datasets. We choose five different real world datasets
and randomly generate data deduplication workloads from
these datasets. These selected datasets stand for different
characteristics for the mainstream workload scenarios in cloud
systems,and these workloads can help to demonstrate the
performance and efficiency of our BURST system.

• Version-Small, which contains the source codes of GDB
[28] 8.0 to 10.2 (12 versions totally).

• Version-Large, which contains the source codes of GCC
[29] 7.1 to 8.5 (10 versions totally).

• Version-Range, which contains the source codes of
Linux [30] 4.4 to 5.10 (nearly 10-year range).

• Backup-VM, which contains 5 backups of an Ubuntu
18.04 raw image [31].

• Web-Archive, which contains the CSS, JS and HTML
files from a university website crawled by Httrack [26].

Figure 6 demonstrates the deduplication ratio and throughput
performance of BURST against the legacy deduplication file
systems when we generating data deduplication workloads
with the different real-world datasets.

B. Deduplication Ratio

Figure 6(a) shows that BURST can achieve higher dedup-
ratio than the baseline (original OpenZFS). However, the
performance gap depends on datasets, for example, BURST
dedup-ratio is marginally better than the baseline in Version-
Small, Version-Large and Backup-VM test cases. This is
mainly due to small dataset size. In Version-Small and
Version-Large, there are only thousands of new lines of code
in a new versions comparing to an older version, so burst-alike
blocks are fewer than identical blocks; in Backup-VM, only
a small portion of an image file may be changed because we
perform the backup at a small time period interval. On the
contrary, Figure 6(a) shows that BURST can perform much
better than baseline especially with large block size. With
16KB block size, the baseline cannot deduplicate anything
while BURST effectively reaches a dedup-ratio of 2.06 in the
Web-Archive cases. The reason why BURST performs well
with Web-Archive is that there are many similar HTML files
with the size smaller than 4KB which share the same HTML
headers and elements. These HTML headers and elements can
be recognized by our method. However,these files will just
be viewed as totally different chunks by legacy method. For
Versions-Range, BURST can still recognize many similar C
source code files even with a bigger block size, while the

legacy one usually results in a lower deduplication ratio, Our
results indicate that BURST is highly advantageous for large
backup systems in which larger percentage of chunks are due
to minor changes on exist data repository.

Different maximum reference count parameter (c max).
The larger c max is, the higher deduplication ratio our method
can achieve. Figure 6(a) shows that the deduplication ratio
with the maximum value set to “255” is 1.9x higher than that
with maximum value set to “1” in the Web-Archive case. This
result is because of the fact that more burst-alike blocks will
be deduplicated with the same reference block with a higher
maximum value.

Different block sizes. In legacy deduplication, the dedup-
ratio monotonically decreases when the block size increases.
However, in the Versions-Range and Web-Archive cases,
BURST dedup-ratio keeps flat with the increment of block
size. Besides, for Version-Small and Version-Large, BURST
dedup-ratio only decreases a bit with the increment of block
size. This situation is caused by the fact that burst-alike blocks
can still be deduplicated even when the block size becomes
larger. Overall, BURST dedup-ratio appears rather insensitive
to the block size. This is another key advantage over the legacy
approach.

C. I/O throughput

Read throughput. BURST read throughput drops because
we introduce more read requests than baseline (OpenZFS). The
baseline has no deduplication table reference operations during
the read procedures, which show better read performance
but cannot perform efficient data deduplication. However,
Figure 6(b) shows that the read throughput of our method does
not drop significantly in the Version-Small, Version-Large, and
Backup-VM cases. In the Version-Small cases where the block
size is set as 255, the read throughput of BURST with c max
= 255 is 87% of read throughput of the baseline. The reason
is that there are fewer additional read requests on reference
blocks. For Web-Archive dataset, with 16KB block size and
c max set to 255, our method achieves poor read throughput,
as there are too many burst in this case so we are more likely
to read a burst-alike block which results in two independent
read requests. The results from Figure 6(b) also demonstrates
that the read performance gap between baseline and BURST
becomes smaller as the block size increases. In the Version-
Range cases with the block size as 16KB, the read throughput
of BURST with c max = 1 is 73% of the read throughput
of the baseline. This situation is caused by the fact that fewer
read I/O requests are issued with larger chunk sizes.

For the dataset such as Backup-VM, it is necessary to make
trade-off between read throughput and dedup-ratio by adjust-
ing the blocksizes. However, for the datasets such as Web-
Archive and Version-Range, the dedup-ratio is not sensitive to
the block sizes, so a large chunk (block) size is preferred.

Write throughput. Figure 6(c) demonstrates that the
BURST write throughput is almost identical to that of baseline
with the same block size. The main reason is that BURST will
choose to skip deduplicating a block whose the reference block
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Fig. 6. The deduplication ratio and throughput performance on different real-world data sets.

is not written to storage devices on time. When we increase
the value of c max, BURST deduplication file system cannot
get higher throughput, although fewer I/O requests are issued
and fewer fingerprints are computed.

D. Relationship between dedup-ratio and I/O throughput
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Fig. 7. The relationship between dedup-ratio and throughput.

In previous subsections, we show results of dedup-ratio and
I/O throughput respectively. These illustrations can exploit the
relationship between deduplication and I/O throughput. In this
subsection, We focus on Backup-VM to exploit the relation-
ship between dedup-ratio and I/O throughput and discuss a
trade-off between them in Figure 7.

Figure 7(a) shows write and read throughput and dedup-ratio
with c max fixed to 255 and block size set to 4KB, 8KB and
16KB. We find that as block size increases, the dedup-ratio of

BURST decreases mildly while the baseline drops sharply; on
the other hand, both write and read throughput meaningfully
elevates. Figure 7(b) shows write and read throughput and
dedup-ratio with block size fixed to 16KB and c max set to 1,
3 and 255. As c max increases, the dedup-ratio also increases
but the write throughput keeps flat and the read throughput
decrease marginally.

E. CPU and Memory Overhead

Three BURST variants are devised to further demonstrate
the trade-off between dedup-ratio and CPU/memory overhead,
including:
1) BURST-Head, a variant of BURST system that only

generates the head for each unique block.
2) BURST-Raw, a variant of BURST system that sets size of

head/tail as 32B (256-bit) and directly uses the raw 32B
data as their fingerprints.

3) BURST-Head-Raw, a variant of BURST system that only
generates the head with 32B size for each unique block.

These variants of BURST use different implementation details
about the head/tail configuration. We use the dataset Backup-
VM to test the overhead as a example, and we set c max as
255 and block size to 4KB or 16KB.

Table II reflects the evaluation results of baseline, BURST
and its three variants. This table record the memory resource



TABLE II
RESULTS OF DEDUP-RATIO AND MEMORY & CPU OVERHEAD FOR BURST AND ITS 3 VARIANTS.

Blocksize Dedup Ratio DT (size) XDT (size) BT (size) Lock (utilization) Checksum (utilization)

Baseline 4k 5.49 196MB / / 8.3% 6.2%
16k 5.22 53MB / / 2.5% 1.6%

BURST 4k 5.89 168MB 40.2MB 7.6MB 8.6% 23.1%
16k 5.39 51MB 3.3MB 0.4MB 2.8% 7.2%

BURST-Head 4k 5.56 182MB 20.4MB 6.1MB 8.6% 18.7%
16k 5.29 52MB 1.7MB 0.3MB 2.7% 5.1%

BURST-Raw 4k 5.89 167MB 40.1MB 7.4MB 8.5% 6.5%
16k 5.37 51MB 3.2MB 0.4MB 2.7% 2.8%

BURST-Head-Raw 4k 5.61 175MB 20.2MB 6.4MB 8.5% 6.7%
16k 5.31 52MB 1.8MB 0.3MB 2.8% 2.8%

utilization of DT, HeadDT, TailDT and BT respectively.
Columns of “Lock” and “Checksum” record normalized CPU
overhead of Locking and checksum computation, which are
two main types of functions occupying CPU resource. Specif-
ically, 100 % CPU utilization refers to that one CPU core
resource is fully occupied.

Firstly, we analyse the BURST file system and their variants
with different block sizes. We note that when increasing block
size form 4KB to 16 KB, the average CPU utilization is lower
while the memory cost with 16KB is about a quarter of that
with 4KB. Therefore, to lower memory and CPU overhead,
larger block size is a better choice although it results in low
deduplication ratio performance.

Then we analyse how to get better balance between higher
dedup-ratio and lower Memory overhead. In general, BURST
file system and its variants cost more memory for dedu-
plication metadata than baseline. This is because additional
head-dte, tail-dte and bte are allocated to record metadata
for BURST deduplication. The memory cost is acceptable be-
cause memory cost for deduplication metadata (215.8MB, with
BURST and 4KB block size) is 2.5% of size of corresponding
data (8.1GB). We note that BURST-head and BURST-head-
raw do save memory compared to BURST system although
they delete tail deduplication table. This is because it fails
detect burst-alike blocks if a burst happens to cross the head
chunk.

We also analyse the trade-off between dedup-ratio and
CPU/memory overhead. In general, our method costs the same
number of CPU cores on locking as baseline. This is because
we do not introduce additional locks or locking functions
but reuse the existing lock related to dte in baseline to lock
all the four deduplication tables. BURST-raw eliminates CPU
overhead on checksum computation for directly using data as
checksums, at the same time retaining data reduction. Burst-
head lowers CPU overhead to some extent by computing one
fewer checksum for each block and halves memory overhead,
however, its dedup-ratio drops noticeably. BURST-head-raw
achieves as low CPU overhead as BURST-Raw and also
halves memory overhead. Its resulting dedup-ratio sits between
BURST-Head and BURST-RAW.

F. Experimental Analysis on Dedup-ratios

During the incremental evaluations on 5 real world datasets,
we note that dedup-ratio saturates along backing up more files.

To further manifest this phenomenon, we design an artificial
dataset called Backup-Artificial, which contains 17 versions
of a 128MB file generated artificially. Its first version is
randomly filled with ASCII characters, subsequently each new
version is built on the preceding version through the following
steps: 1) Split the preceding version into 32768 blocks with
4KB size; 2) Randomly choose 1/4 (8192 blocks) from all the
blocks; 3) Replace 1KB continuous data with arbitrary offset
in each chosen block by random ASCII characters.

We record dedup-ratio along backing up each new version.
The results are shown in Figure 8. In this figure, x axis
refers to the number of files deduplicated so far. With legacy
method, when each newer version is incrementally backed up,
the dedup-ratio first increases but then decreases a bit in the
end. The intuitive reason is that each newer version steadily
introduces more distinct contents from the previous versions,
so the dedup-ratio deteriorates after the initial increasing.
However, with our method, the dedup-ratio keep moving
much higher until becoming saturated, especially when the
block size is configured as 4KB or 8KB. This is because
we can recognize burst-alike blocks from early versions so
an entire data chunk write can be replaced by a small burst
write. Upon the above observations, we claim that our method
is particularly beneficial in certain real scenarios such as
periodical logs backup and VM snapshots.

VI. LIMITATION OF BURST AND DISCUSSION

Limitation: The current BURST concentrates on the main-
stream file systems using fixed-sized chunks, so integrating the
novel design of burst-encoded fingerprint matching methods
into the variable-sized chunk-based systems remains as an
important future work. Fortunately, BURST can be easily
improved to provide different configuration options (such as
setting partitioning methods, fingerprint calculation methods,
etc.) to adapt to different settings or more comlicated applica-
tion scenario (such as prioritizing high deduplication rates or
low system overhead).

Overhead Discussion: In current BURST implementation,
the pattern calculation method of BURST file system uses
traditional CPU to calculate checksums, resulting in some CPU
usage. Currently, hardware-accelerated calculating checksums
researches and methods [32] can be integrated into the BURST
prototype to avoid errors and reduce the additional CPU
overhead.
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Fig. 8. The dedup-ratio in the Backup-Artificial test case.

VII. RELATED WORKS

Researches on deduplication file systems [25], [33]–[35]
have been concentrating on providing high deduplication ratio
and low overhead towards generic data deduplication scenarios
against the previous hardware-implemented data deduplication
methods on specific storage medias [15], [36], [37], [37],
[38]. Fixed-length deduplication has been mainly deployed in
primary storage systems [3], [4], [9]. Content-based variable-
length deduplication achieves higher data reduction by meticu-
lously handling the boundary shift issue, however, at the price
of much longer latency than the block deduplication (e.g., [5],
[6], [8], [17]). It is advantageous in the secondary storage
systems, wherein latency is not much a concern to allow for
computationally intensive segmenting operations. Fingerprint
is used to find identical chunks from the existing data storage.
There are two types of fingerprints, namely, weak and strong.
When strong fingerprint (e.g., SHA-1, SHA-2) is applied,
two blocks with identical fingerprints are safeguarded to be
identical (noting the probability of data collision is way way
below storage failure tolerance) (e.g., [3], [8], [39]–[41]. On
the other hand, weak fingerprint (e.g., CRC, or ECC parity)
is much shorter and computationally much lighter than the
counterpart strong ones (e.g., [16], [27]). when weak finger-
print is applied, the probability of two different blocks with
identical fingerprint can no longer be neglected. Therefore,
the reference chunk must be read out and matched byte-wise
if two weak fingerprints are matched. Evidently, the weak
fingerprint approach uses much smaller memory footprint and
ensures collision-free at the expense of extra read and match
operations. So our BURST design help to provide system
prototype implementation insights to reach better balances
between deduplication efficiency and the resource overhead.

In delta compression [42]–[44], the key research issue is
how to accurately detect a fairly similar candidate for delta
compression with low overheads. Manber [20] proposes a
basic approach to find similar files in a large collection of
files by computing a set of polynomial-based fingerprints (i.e.,
[19]); the similarity between two files is proportional to the
fraction of fingerprints common between them. This approach

has been used in [23] to detect similar files and then delta
encode them. The super-feature approaches [45], [46] are
based on Broder’s theorem [47]. Stream-informed delta com-
pression [12] shows that post-deduplication delta compression
can further improve the data reduction ratio by a factor of 3 5
when replicating between EMC’s deduplicated backup storage
systems. Deduplication-aware resemblance detection [24] ex-
tends this work of [12] by detecting potential similar chunks
for delta compression based on the existing duplicate-adjacent
information after deduplication, i.e., considering two chunks
similar if their respective adjacent chunks are determined as
duplicate in a deduplication system.

VIII. CONCLUSIONS

Inspired by an insightful observation that in backup systems
a unique data chunk may best match a chunk depository by a
short burst, we presented BURST, a novel chunk-based data
deduplication System with burst-encoded fingerprint match-
ing to efficiently deduplicate the imperfectly-matched data
chunks. BURST creates head and tail fingerprints, associated
with the beginning and ending data respectively, on top of
the conventional fingerprint. We implemented and evaluated
BURST in the open-source storage platform (OpenZFS) and
our system prototype is open-sourced. BURST consistently
beats the legacy methods on the data reduction across all 5
datasets, wherein the larger dataset produces the more striking
gap. BURST can achieve 2.06 × optimization over the legacy
method. BURST exhibits almost identical write throughput
compared to legacy method while the read performance is 87%
of legacy method. Furthermore, BURST with 16KB chunk
size is shown to consistently achieve higher data reduction than
the legacy method with (smaller) 4KB chunk size, rendering
higher performance and lower system cost.
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