
Minimizing Performance Degradation of RAID
Recovery Through Pre-Failure Prediction

Jialin Liu2, Yujiong Liang2, Yunpeng Song2, Yina Lv4, BLiang Shi1,2,3
1Software/Hardware Co-design Engineering Research Center, Ministry of Education, Shanghai, China

2School of Computer Science and Technology, East China Normal University, Shanghai, China
3Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China

4Department of Computer Science, City University of Hong Kong, Hong Kong, China

Abstract—Redundant Array of Independent Disks (RAID) is
one of the mostly adopted storage systems to achieve fault
tolerance capability. For parity-based RAID systems, which
have high capacity utilization and good fault tolerance, multiple
storage devices are arranged in the array to store upper-level
data and parity. The RAID system recovers data on a failed
storage device using the remaining data and parity on other
devices and writes them to a new replacement device. The RAID
system suffers from degraded performance and fault tolerance
ability during an intolerably long recovery process which can
last for several hours.

In this paper, we propose that existing storage device fault
prediction mechanisms can be adopted to avoid such intolerably
long degradation time. The prediction mechanism can identify
faulty devices before they actually fail and start creating mirror
devices for them, which can immediately replace the original
device with no degradation time. Current prediction models
usually focus more on precision rate than recall rate to avoid
replacing too many healthy storage devices and sacrifice their
ability to find more potentially faulty storage devices. Based
on the above observations, we propose a two-stage backup
mechanism that enables the models to have a higher recall rate to
find more faulty storage devices. Instead of directly replacing the
predicted faulty device, the mirror device will be synchronously
updated with the predicted faulty device for a certain period
of time until it actually fails. By avoiding directly removing the
predicted faulty device, the disadvantage of a low precision rate is
reduced. Numeric modeling analysis shows that our mechanism
can reduce the degradation time of the whole fleet in the data
center.

I. INTRODUCTION

Servers with multiple storage devices (e.g., hard disk drive
(HDD), solid-state drive (SSD)) are widely deployed in data
centers to provide large storage capacity to hold the ever-
growing amount of data. Multiple storage devices also present
multiple risks of device failure for these servers. Failure on a
storage device will make all data on the device inaccessible.
As data loss is unacceptable under scenarios like data center
applications, data recovery capability is necessary under these
scenarios. To provide data recovery capability, the storage
system that manages these storage devices stores redundancy
information along with the user data. When data recovery is
triggered, the redundancy information is used for rebuilding

This work is supported by the NSFC 62072177, Shanghai Science and
Technology Project 22QA1403300 and the Open Project Program of Wuhan
National Laboratory for Optoelectronics NO.2023WNLOKF004. The corre-
sponding author is Liang Shi (shi.liang.hk@gmail.com).

the lost data and writing them to the storage device that
replaces the faulty one.

Because of its simplicity and high capacity utilization, the
parity-based Redundant Array of Independent Disks (RAID)
system [1] has become one of the widely deployed storage
systems that provide such data recovery ability. It has been
widely used in data analytics [2], machine learning [3],
enterprise storage [4], and cloud environments [5]–[7]. In
parity-based RAID systems, parity of user data is used as
redundancy information. Lost data on a faulty device can be
calculated with parity and the remaining user data and written
to the replacing device. When a tolerable number of storage
devices fail, a parity-based RAID system will enter a degraded
mode. The degraded mode duration should be shortened for
at least two reasons. First, in a degraded mode, the parity-
based RAID system still functions with no data loss but serious
performance degradation due to the loss of original user data.
Second, a degraded RAID system will have weaker or no fault
tolerance ability due to the redundancy reduction. To exit the
degraded mode, the faulty storage device must be replaced by a
normal one, and a recovery process must be started. However,
the recovery process usually requires a long time (e.g., tens of
hours), leaving the RAID degraded for a long period [8]–[10].

Existing works [11], [12] focus on reducing the duration
of the recovery process. But with the limited I/O throughput
of the replacing device, the recovery process is still too
long. Some works [13]–[16] try to predict the failure of
certain storage devices, utilizing the statistical (i.e., Self-
Monitoring Analysis and Reporting Technique (S.M.A.R.T.)
[17]) information of these devices. Once the storage device
is predicted as a faulty device, it can be replaced and the
recovery process is triggered. Prediction can be adopted to
recover the faulty storage devices in advance. A mirror device
of the potentially faulty device can be immediately created
once the prediction process identifies the device. The mirror
device can replace the faulty device immediately after it is
completely generated, causing a very short degradation time.
However, the problem is that prediction is not always accurate.
Considering the high price of enterprise-level SSDs, current
prediction-based works tend to trade recall for precision. In
simple terms, current works tend to have fewer healthy devices
mispredicted and more potentially faulty devices undiscovered.
The undiscovered faulty devices still cause degradation in

RAID, which restricts the effect of prediction.
In this paper, we propose a novel method that enables the

prediction to have a higher recall rate, leaving fewer potentially
faulty devices undiscovered during prediction. The challenge
is that this strategy will cause more mispredicted healthy
devices to be replaced, which may cause waste and increase
overheads. To solve this challenge, we propose a mechanism
that enables the original device to continue functioning. A
mirror device will be created as the backup. Instead of directly
removing the original one, we leave the original device to
continue functioning till its failure. The mirror device can
replace the original device immediately if the failure happens.
Otherwise, the mirror device is released and can be used
as other potentially faulty devices’ mirrors. In this way, the
RAID system obtains an increase in reliability and average
performance.

The contributions of this paper are as follows.

• We propose a prediction-based pre-failure recovery mech-
anism to avoid long RAID degradation time caused by
device failure.

• A two-stage backup mechanism is proposed to enable
prediction models to have a high recall rate, i.e., find
more potentially faulty devices.

• Four exceptional cases of the proposed mechanism and
the corresponding countermeasures are discussed to im-
prove the robustness of the proposed mechanism.

• Experimental results show that the total performance
degradation time reduction in a data center can be im-
proved by 150% with 0.06% more storage devices as
overheads.

II. BACKGROUND AND MOTIVATION

A. Parity-based RAID

1) Mechanism of Parity-based RAID: Considering all forms
of storage systems, the parity-based RAID systems provide
storage device fault protection ability with low cost and com-
plexity. Typical parity-based RAID methods include RAID5
and RAID6. The storage space of a parity-based RAID system
is organized in stripes. Each stripe is composed of chunks, and
every chunk in a stripe comes from a different storage device
in the array.

The parity chunks used as redundancy are generated by
performing the XOR operation on the user data chunks. Each
stripe in RAID5 contains one parity chunk while each stripe
in RAID6 contains two parity chunks. The parity enables
RAID5 to tolerate up to one device failure with no data lost.
RAID6 can tolerate up to two device failures with no data
lost. The parity chunks of each stripe spread across all storage
devices in the array to spread I/O pressure. To recover a
lost user data chunk in the stripe, the rest of the user data
chunks in the stripe and the parity chunk(s) must be read from
the remaining storage devices. The lost user data chunk can
then be calculated by performing the XOR operation on these
chunks.

2) RAID Degradation: Although no data loss happens
when a tolerable number of storage devices fails, the RAID
system enters a degraded mode. Since obtaining the lost data
chunk on the failed device incurs extra read operation and
calculation, the total read performance degrades inevitably.
To show the degradation problem of RAID, we use three
SSDs to form a normal RAID5 array (platform information
is shown in Section IV). For comparison, we set one SSD
as a failure device to form a degraded RAID5 array. FIO is
adopted to perform the evaluation under both circumstances
to report 4KB-random-read throughput and 1MB-sequential-
read throughput. As shown in Table I, the degraded RAID5
can only provide 21.8% random read throughput and 24.17%
sequential read throughput compared to the normal RAID5.
Besides performance degradation, the fault tolerance ability is
also degraded, as the redundancy in the array reduces. For a
degraded RAID5, another storage device failure will cause data
loss in the array, which can hardly be recovered. Therefore,
parity-based RAID must exit the degraded mode as soon as
possible.

TABLE I: Performance degradation of RAID.

Normal RAID5 Degraded RAID5
Random Read Throughput 5347 MB/s 1142 MB/s

Sequential Read Throughput 10600 MB/s 2563 MB/s

3) Disadvantage of Post-failure Recovery: Considering
modern storage devices’ high capacity and parity-based recov-
ery’s complexity, the recovery process of parity-based RAID
systems will take hours to recover, leaving the RAID systems
degraded for a long time. As shown in Figure 1a, a traditional
measure against device failure under parity-based RAID is
a post-failure recovery mechanism. To handle device failure
in time, a RAID system is usually equipped with a spare
device, which stores no data and is used for replacing faulty
devices. The spare device will replace the faulty device after
the failure happens. Before the spare device is applicable in
the array, the data on the faulty device must be recovered to
the spare device. As mentioned in Section II-A1, chunks in
the remaining devices are read to calculate the lost data. This
complicated process and the large volume of data can cause
an intolerably long degradation period, which can be worsened
with a certain amount of foreground workload pressure.

To avoid the long degradation time issue, one simple
solution is through a pre-failure recovery scheme, as shown
in Figure 1b. The basic process is as follows: First, a pre-
dictor is used to predict potentially faulty devices. Then a
spare device is used for preparing a mirror device of the
potentially faulty device that is still functioning. The mirror
device can replace the faulty device with no degradation time
since it already carries the data on the faulty device. The
advantage of the pre-failure recovery mechanism comes from
two parts. First, data written to the spare device in advance
eliminates the need to recover data under degraded mode, thus
eliminating the degradation period. Second, with the original
device still functioning, the mirror preparation step is much

1.Read2.Compute

3.Write
(i) Device failure

happens
(ii) Replacing faulty

device with spare
(iii) RAID recovery

(a) Traditional RAID post-failure recovery

(a) Traditional RAID post-failure recovery.

Predictor
Data Copy

(i) Device failure
predicted

(ii) Mirror
 Preparation

(iv) Replacing faulty
device with spare

(iii) Device failure
happens

(b) Proposed pre-failure recovery

(b) Proposed pre-failure recovery.

Fig. 1: Comparison between post-failure recovery mechanism and pre-failure recovery mechanism.

less complex than the parity-based RAID recovery process.
These advantages significantly reduce the recovery’s influence
on foreground workloads. In this paper, a pre-failure prediction
based recovery method will be proposed to solve the long
degradation time issue.

B. Storage Device Fault Prediction

1) Typical Prediction Process: As compared to passive
recovery of RAID systems, methods for predicting failures are
increasingly being investigated. Predicting failures can leave
enough time for operation staff to protect the data, such as
migrating them to a completely new device. Since device
failure is often related to many factors, such as workload,
environment, age, etc., this leads it to be a complex statistical
problem. So, predictive methods tend to use machine learning
algorithms to help find the patterns of the failed devices. Over-
all, the machine learning based prediction process consists of
four steps as shown in Figure 2.

Dataset

Pre-processing
Dataset

Data cleaning
Standardized data
... ...

Feature Selection

X1 X2 X3 X4 Y

1 3 8 6 A

3 6 3 3 B

5 6 2 5 C

X1 X4 Y

1 6 A

3 3 B

5 5 C

Output
variables

Input
features

Test set Training set+

Select algorithms & Train model

 1

 2

 4

Fig. 2: The machine learning based prediction process.

First, data for the device is collected (step ❶). This is
because the essence of the model is to make judgments about
the future by learning the trends of various attributes in large
amounts of data. The S.M.A.R.T. is the most used information.
This technique intermittently records information about the
current state of the device as well as other factors such as
environment and workloads. Second, since the S.M.A.R.T.
mechanism is not completely reliable, the collected data may
often be missing. Also, different attributes have different types
of values, so the data needs to be pre-processed (step ❷),
containing operations such as padding and normalization.
Third, feature selection is particularly important (step ❸).
This is because the S.M.A.R.T. mechanism contains too many

Actually Faulty Device

Actually Healthy Device Predicted
Faulty Devices

(a) High precision model has fewer mispredicted healthy devices.

Predicted Faulty Devices

(b) High recall model has fewer unpredicted faulty devices.

Fig. 3: Comparison between high recall model and high
precision model.

types of attributes, but not all of them contribute to failure
prediction. On the contrary, irrelevant attributes can lead to
longer model training time and even affect the prediction
performance. Therefore, in this step, data with some irrelevant
attributes will be eliminated. Finally, the data is split into a
training set and a test set. The training set is used to train the
model while the test set is used to evaluate the performance of
the model. Then, the appropriate machine learning algorithm
is selected and the model is being built using the sliced and
diced data set (step ❹).

To better explain our prediction results and design philoso-
phy, subsequent descriptions will classify the samples into four
categories i.e., True Positive (actually faulty, predicted to be
faulty), False Positive (actually healthy, predicted to be faulty),
True Negative (actually healthy, predicted to be healthy) and
False Negative (actually faulty, predicted to be healthy).

2) Challenges of prediction methods: For the performance
of a model, we usually characterise it with the following two
metrics:

• Precision Rate (PRE): The ratio of the number of cor-
rectly predicted failure devices to the number of devices
predicted to fail.

• Recall Rate (RECALL): The ratio of the number of
correctly predicted failed devices to the total number of
failed devices.

For both metrics, higher is better. However, for well trained
models, there is a trade off between the two metrics, i.e.,
improving one metric usually reduces another metric. We

briefly compare the difference between high precision models
and high recall models, as shown in Figure 3. For the high
precision model in Figure 3a, fewer misidentified failures exist
but fewer failure devices are identified compared to that in
Figure 3b. And for the high recall model in Figure 3b, more
failure devices can be identified, but they also misidentify
healthy devices as positive. In most cases, high precision
models are usually chosen to avoid incorrectly discarding
healthy devices as faulty devices, which may waste all those
healthy devices. However, such an approach would also make
the model weak in identifying failure devices. It becomes a
challenge to use predictive models effectively. But if we do
not discard the positive devices immediately, we may have
a chance to see whether the devices are actually faulty, thus
enabling us using a high recall model.

III. DESIGN

A. Overview

To fully utilize prediction to help shorten the degradation
period, we propose a two-stage pre-failure recovery method to
make a backup for the predicted positive devices in advance.
The first stage is the mirror generation stage, which generates
a mirror device for the positive devices given by prediction.
This mirror device can be treated as a backup of the original
device and replace the original device at any time to avoid
the original device causing failure. The second stage is the
mirror maintenance stage, keeping both original device and
mirror device functioning and waiting for failure. Mirror
maintenance is adopted so that the positive devices are not
discarded immediately, enabling the mechanism to see whether
the devices are actually faulty. This enables our mechanism to
adopt a high recall model, as mentioned in Section II-B2.

Figure 4 shows the whole process of our mechanism. Firstly,
a recall-enhanced model is trained offline for the prediction
job. Secondly, the S.M.A.R.T. information is periodically
fetched as data input of the model. The model then uses the
accumulated S.M.A.R.T. information to predict which storage
devices are going to fail. Thirdly, for these predicted faulty
devices, our method starts to generate a mirror for them. A
spare device will be used for generating the mirror device (i.e.,
data of the original device will be synchronized to the spare
device). Finally, the original device will be monitored for a
certain period of time as the observation period. The mirror
device will be updated synchronously with the original device
during the observation period (in a RAID1 manner). The
mirror device can replace the original device immediately after
the original device fails. If the original device survives during
the observation period, the mirror device will be released and
can be used for mirroring other devices.

B. Model Tuning

As previously stated, our design relies on a recall-enhanced
version of the model. Therefore, how the performance of the
model is tuned is fundamental to realizing our design. Failure
prediction can be viewed as a binary classification task where
the model simply outputs 1 or 0, with 1 representing predicted

Dataset

Recall-enhanced
model

Predicted
Faulty Devices

Runtime Data
Exceptional Event Handling

Mirror
Generation &
Maintenance

(b) High Recall Model has fewer unpredicted faulty devices

(a) High Precision Model has fewer mispredictied healthy devices

Fig. 4: Process overview.

failure and 0 representing predicted health. In real practice,
we can take from the machine learning model the probability
that the sample will be identified as a 1. This means that each
sample will have a probability value distributed between 0 and
1, as shown in Figure 5. Typically, the probability value of a
device that is actually faulty will be closer to 1, while a device
that is actually healthy will be closer to 0. However, there
will always be situations where the distribution of these two
types of devices intersects, which is also why the prediction
cannot be perfect. In this case, we can set the threshold. For the
predicted value above this threshold, we consider this sample
to be predicted as faulty. Conversely, it is considered to be
predicted as healthy. By adjusting the threshold, we can easily
tune the model, setting it to a high recall model (or a high
precision model if needed). As shown in Figure 5, we show
three thresholds as examples. Threshold 3 identifies all faulty
devices and identifies some healthy devices as faulty as well,
at which point the model becomes a typical high recall model.
Similarly, threshold 1 represents a high precision model and
the threshold 2 represents a balanced model.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Fa
ilu

re
 p

ro
ba

bi
lit

y
gi

ve
n

by

m
od

el

Actually healthy devicesActually faulty devices

Threshold 2
(Balanced Model)
Threshold 3
(High Recall Model)

Threshold 1
(High Precision
Model)

Fig. 5: Schematic overview of model performance tuning.

It should be emphasized that in our design, we do not
restrict what model to use, we only focus on the tuning of
the model. In fact, tuning model performance by thresholds
is a very pervasive method that is applicable to almost all
machine learning algorithms used for classification tasks. In
the subsequent design, in this paper, we take Random Forest
(Random Forest [18]), which is currently used widely, as an

example, and build a real model with real data to verify the
reasonableness of our design.

C. Mirrors for Predicted Failure Devices

To provide a substitute for the positive storage device in the
failure prediction, our mechanism generates a mirror device.
The mirror device has the same content as the original device
and can immediately replace the original device. Then, once
the predicted device fails, the mirror device can replace the
faulty device quickly. However, such a straightforward strategy
prefers a high precision of prediction to avoid replacing mis-
predicted healthy devices, which increases the maintenance
cost. This limits the amount of potentially faulty devices that
the prediction process can discover.

To solve this issue, our mechanism also maintains the mirror
device for an observation period after the mirror device is set
up. False positive devices can survive an observation period.
After the observation period, the related mirror devices can
be released if the original device is still functional (will
be further discussed in Section III-D3). The true positive
devices are likely to fail during the observation period and the
mirror device can replace the failed device immediately with
little degradation time. The maintenance of the mirror device
requires synchronous updating with the original device for
consistency. Therefore our mechanism forms a RAID1 array
of the original device and the spare device to make the spare
device become the mirror of the original device.

P

RAID5

RAID5

P

M

RAID1

Spare Device

Predictor

Positive Device in
Failure Prediction P

2. Mirror Generation
(RAID1 Construction)1. Failure Prediction

3. Observation Period
(RAID1 Maintenance)

RAID5

RAID5

P

M

4. Device Replacement

Mirror
Device

Mirror Device Replacing

Failed Device Removed

Fig. 6: Lifetime of mirror device.

The process is presented in Figure 6, which uses a 4-disk
RAID5 as an example. Firstly, a positive device is detected by
the prediction algorithm. Secondly, our mechanism begins to
use a spare device to form a RAID1 array with the positive
device, which is still functioning currently. Thirdly, the RAID1
functions as a single device in the upper-level RAID5 during
the observation period. The RAID1 carries the data on the
positive device and waits for the device failure. Finally, after
the original device fails, the original device is removed and
the mirror device remains to serve as the original device.

D. Exceptional Event Handling

The above design is simple and easy to avoid the long
degradation period. However, there are several exceptional
events not considered. In this subsection, we mainly discuss
the handling of possible exceptional events (i.e., events outside
the normal process) to ensure the robustness of our mecha-
nism.

Mirror
GenerationPrediction

Observation
Period

Case1：Multiple
Positive Target

Original
Device
Failed?

Observation
Period

Release
Mirror Device

Case2：Device Failure
during Mirror Generation

yes

no

Case4：Un-predicted
Failure Case3：Possible

Mis-predicted Device

Fig. 7: Possible exceptional events during process.

As listed in Figure 7, four exceptional events are discussed
below. The first event, multiple positive targets, happens when
more positive devices are given by the predictor compared
to the spare devices available on the server, forbidding our
mechanism to provide a mirror device for every positive
device. The second event refers to the case that a device fails
during the mirror generation process, disrupting the mirror
generation process. The third event, possible mispredicted
devices, refers to the case that a healthy device is identified as
positive, which may occupy the mirror device meaninglessly.
The fourth event, un-predicted failure, refers to un-predicted
failures (i.e., false negative devices), which cannot be handled
by our pre-failure recovery mechanism. In the following, these
four events are discussed in detail.

1) Multiple Positive Targets: There is a possibility that
multiple storage devices on a single server are predicted as
positive. As mentioned above, each positive device requires a
spare device to generate its own mirror device. Thus, in our
scheme, the number of spare devices on the server must be
no less than the number of positive devices to generate and
maintain mirror devices. However, due to the limited number
of storage device slots on a server, the available spare devices
may not be enough.

An optimistic solution is to consider that not all devices
require urgent backup since prediction precision is reduced
in our mechanism. The devices’ probability value given by
the prediction model is compared to decide the devices that
require the most urgent handling. Mirror devices will only be
generated for the most urgent devices given by the prediction
model. The remaining devices are left without any backup
and recovered by a post-failure recovery process in the case
of failure. The downside of the optimistic solution is that the
unprotected remaining devices are still likely to become faulty
and cause degradation in RAID.

To avoid the degradation issue, our mechanism adopts a
pessimistic solution. The pessimistic solution is to consider all
devices as faulty and directly replace positive devices that are
beyond our ability to generate mirrors. Our mechanism begins
with generating mirrors using the available spare devices for
part of the positive devices. Figure 8 shows an example of
our mechanism. At first, the first four devices are predicted
as positive, while only two spare devices are available on
the server. Then, our mechanism generates mirror devices for
devices 3 and 4, assuming that they have higher probability
value given by the prediction model than devices 1 and 2.
As we adopt a pessimistic solution, devices 3 and 4 are
thought to be faulty. So they are immediately replaced by
their corresponding mirror devices. Their observation periods
are omitted as they are thought to fail in the near future to
make room for other devices’ mirror devices. With devices 3
and 4 replaced, their slots can be used for new spare devices
to be plugged in. The observation period is omitted until
there are enough spare devices to generate a mirror device
for every remaining positive devices. If the number of spare
devices is enough, the remaining positive devices won’t be
immediately removed after their mirror devices are generated
and will enter the observation period. In the given example, the
spare devices are enough after devices 3 and 4 are replaced, so
devices 1 and 2 are each provided a spare device for generating
a mirror device and entering the observation period. Note
that if a mirror device exists before the number of positive
devices exceeds the number of spare devices, the existing
mirror devices’ observation period will be omitted first.

�1 �2 �3 �4

Spare Devices
(or Mirror Devices)

Positive Device

�1 �2 �3 �4 �3′ �4′

�1 �2 �3′ �4′

Mirror generated for device 3 and 4

Healthy and Functioning
Devices

Device 3 and 4 removed, omitting
observation period

New spare devices plugged in Mirror generated for device 1
and 2 with observation period

�1 �2 �3′

�4′�1′ �2′

Fig. 8: Handling multiple positive targets.

Such a pessimistic solution may cause healthy devices (false
positive devices) to be replaced compared to the optimistic
solution. However it reduces the probability of data loss and
array degradation, which is worthy. Beside, the situation where
the number of positive devices detected is greater than the
number of spare devices is a rare case. So this pessimistic
solution won’t cause too much waste of healthy devices.

2) Device Failure during Mirror Generation: It’s possi-
ble that a device fails before the mirror generation process
completes. This event can be handled in an intuitive way.
In the case that the original device breaks before the mirror

generation process completes, the data on the mirror device
can be abolished and the mirror device can be directly used
as the device for RAID recovery. In this case, the RAID enters
degraded mode and a post-failure recovery is executed. With
the prediction enabled design, this will be a rare case. Then,
it’s acceptable to use such a naive policy.

3) Handling False Positive Devices: In our mechanism, the
precision of prediction is supposed to be reduced to have a
high recall. This may cause the prediction process to identify
more healthy storage devices as positive. Our mechanism also
generates mirror devices for these mispredicted devices as it
can’t tell these false positive devices from the true positive
devices. In this case, the mirror devices are wasted since the
original device doesn’t actually need a backup. This may cause
inadequate spare devices on the server when other storage
devices are identified as faulty later. The meaningless wear of
the spare device also reduces the endurance of the spare device
without any benefit. The previously mentioned observation
period is set to reduce the effect of the problem mentioned
above.

Two problems for the design of the observation period
should be discussed. Firstly, the length of the observation
period should be confirmed. We choose 10 days as the length
of the observation period, which is an empirical value used by
existing work [16] and can be adjusted. In fact, the observation
period should be set to coincide with the prediction period.
This is intuitive since the probability given by the prediction
model is the probability that the device will fail in prediction
period. The prediction period refers to the limit of the pre-
diction algorithm on how much time in the future a failure
will occur. Secondly, the subsequent processing of the devices
that survive the observation period should be considered.
Despite surviving the observation period, the device can be
still identified as a positive device in the later prediction. This
is due to two reasons. First, the prediction model depends
on the device’s current and historical statistical information,
which may remain similar to that in the previous prediction
and cause the device to be identified as positive again. Second,
the device itself may actually be a potentially faulty device that
survives longer than the observation period. However, the true
positive devices that can survive the observation period are
rare. Thus our mechanism treats all the devices that survive
the observation period as healthy devices. These devices are
tagged and mirror device generation is forbidden for these
devices. Although this may leave the device unprotected when
it’s really going to fail, the influence is small enough to be
ignored as this case is rare.

The whole process of the observation period and its suc-
ceeding process is summed in Figure 9. First, the mirror
device is generated for the positive device and back it up.
Then the two devices enter the observation period (10 days
or other duration), waiting for the positive device to fail. If
the positive device fails during the observation period, then
the faulty device is removed and replaced by the mirror
device. Otherwise, the positive device continues to function
and survives the observation period. In this case, the current

mirror device is released and the positive device is tagged
as healthy. Later prediction results may identify it as positive
again, but the tag will stop our mechanism from generating a
new mirror device for it.

P

P M

Mirror Generation
and Maintenance

Observation

P M

MP

Fault
Happens

No Fault
Happens

Faulty Device Removed
Mirror Device Replacing

Mirror Device Removed
Original Device Tagged

Fig. 9: Observation period and succeeding process.

4) Unpredicted Failure: Although we raise the recall of the
prediction, unpredicted failures (i.e., false negatives) are still
inevitable. These unpredicted fail devices are replaced using
healthy devices and recovered by the post-failure recovery
process. They have no influence on the mirror generation
process and the observation period.

E. Discussion
As we mentioned above in Section III-D3, our mechanism

may generate mirror devices for the false positive devices,
which are actually healthy. Despite these misused mirror
devices are finally released, the mirror generation and main-
tenance process may cause wear to them, which is a hidden
cost in our method. However, as we will show in Section
IV-B, with a proper threshold set for the prediction, the false
positive devices can be rare. So these wear are acceptable.
There is actually a trade-off between the required extra mirror
device and RAID degradation time reduction. Our evaluation
proves that a proper point can be found.

As we will show in Section IV-A, our mechanism has
limited improvement in write throughput. This is mainly
because the complexity of the write process in parity-based
RAID, especially with a small I/O size, is similar to that of
the degraded read process. Thus the write process degradation
isn’t obvious compared to that of the read process. This limited
optimization space limits our mechanism’s effect.

As mentioned earlier, the proposed pre-failure recovery
mechanism cannot handle all device failures due to the in-
evitable existence of unpredicted device failures in prediction.
Therefore, the post-failure recovery mechanism is still neces-
sary to handle unpredicted device failures. But as there is a
non-negligible number of predicted device failures, the pre-
failure recovery mechanism can still have an inspiring effect
on degradation time reduction, which will be further studied
in Section IV-B2.

IV. EVALUATION

Restricted by experimental resources, we can’t prove our
mechanism in a data center. Thus we carry out the evalua-

tion in two steps. First, we evaluate the pre-failure recovery
mechanism’s benefit in a single RAID system in Section IV-A.
In this section, we disable a storage device in the RAID to
simulate a device failure. The degradation time and effect
on the performance of RAID are evaluated. Second, we use
the degradation evaluation results in Section IV-A and the
performance of the prediction model tuned in Section III-B
to form a numeric model to simulate the situation in a data
center in Section IV-B. We use the numeric model to evaluate
the total benefit of our mechanism in a data center.

A. Single RAID System Evaluation

1) Experiment Setup: As mentioned above, we carried out
our experiments on a server with two 20-core Intel XEON
CPUs and 384GB DRAM, running Ubuntu 22.04 with Linux
kernel v6.2.0. We use four 1TB ES3500P SSDs as the high-
density SSDs, three for array construction and one for re-
placement. For simplicity, we only use an 128GB partition
on each SSD to construct the parity-based RAID. For the
RAID managing system, we adopt the widely adopted Linux
mdraid [19] and use RAID5 as the RAID format for the
four SSDs. The chunk size of RAID is set to 512KB by
default and the RAID worker thread number is set to 16. For
the foreground workload, we use FIO [20] to generate read
and write workloads. I/O size is set to 4KB and 1MB for
random workload and sequential workload, respectively. We
compare the proposed pre-failure recovery mechanism with
the traditional post-failure recovery mechanism. For the pre-
failure recovery mechanism, our evaluation prototype utilize
the mdraid’s RAID1 for mirror device generation and main-
tenance. For the post-failure recovery mechanism, the failed
device is recovered by the mdraid using parity and remaining
data.

2) Degradation Comparison: In this section, the degrada-
tion period length and performance degradation are compared
between the post-failure recovery mechanism and the pre-
recovery mechanism. As mentioned above, the degradation
period of the post-failure recovery mechanism refers to the
time after the device failure (i.e., step (iii) in Figure 1a). The
recovery process is supposed to start immediately after device
failure is detected. For our proposed pre-failure recovery
mechanism, the benefit exists when the failure is previously
predicted and a mirror device is generated and kept until the
failure happens. In this case, replacing the faulty device with
the mirror device won’t take more than a second. However,
the mirror generation process lasts long and may have negative
effects on performance. Thus we define the degradation period
of the pre-failure recovery mechanism as the mirror generation
period (i.e., step (ii) in Figure 1b).

Degradation Throughput Evaluation: We first measured
the foreground throughput (with fio thread number set to 32
and queue depth set to 16, which saturate the throughput of our
implemented RAID system) during degradation to compare the
performance of the two mechanisms. The results are shown
in Figure 10. For the pre-failure recovery mechanism, the
performance degradation is subtle. The degraded throughput

of foreground workload is no less than 93% of the normal
throughput. The mirror generation process doesn’t have much
influence on foreground workload. In contrast, the throughput
degradation of the post-failure recovery mechanism is obvious.
The random read throughput degrades to 23.4% of the normal
throughput. And the sequential read throughput degrades to
23.9% of the normal throughput. This is because data on the
failed device is lost and must be recovered by the parity-
based recovery process, which involves reading all remaining
devices and calculation. Such a process significantly degrades
the throughput. The write throughput degrades slightly in
both mechanisms due to complexity of the write process, as
mentioned in Section III-E.

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Random Read Random Write Sequential Read Sequential
Write

Post-failure Recovery Pre-failure Recovery

Fig. 10: Degraded throughput relative to normal throughput
(the higher is better).

We further look into the case of 4KB-random-read accesses.
We modify the queue depth and thread number job parameters
to generate workloads of different pressures. Then we run
the workload of the same parameter separately under the
degraded state and normal state of the two recovery meth-
ods for evaluation. The throughput degradation of the same
workload is shown in Figure 11. The degraded performance
of pre-failure recovery varies between 96.9% and 99.0% of
the normal performance, which shows subtle degradation. In
contrast, the degradation of post-failure recovery failure can be
degraded to 72.0% to 79.8% under a low foreground workload
pressure. With the foreground workload pressure going higher,
the performance of RAID under post-failure recovery failure
can be degraded to only 23.4% of the normal performance.

0.0%

25.0%

50.0%

75.0%

100.0%

d1t2 d1t4 d2t4 d4t4 d4t8 d4t16 d8t16 d16t16 d16t32
Post-failure Recovery Pre-failure Recovery

Fig. 11: Degradation of 4KB-random-read throughput. For
labels on the x-axis, d refers to queue depth, t refers to thread
number, and the following number is their value separately.

We also run a 4KB-random-read FIO workload and set
a device to faulty or begin a mirror generation process to
evaluate the transient influence on performance. Figure 12

shows the results. Under the traditional post-failure recovery
mechanism, where mirror generation is not involved, a device
failure directly causes degradation and reduces the throughput
sharply to only about one-fifth of the normal throughput, as
shown in Figure 12a. Under the proposed pre-failure recovery
mechanism, we first evaluate the mirror generation process.
The mirror generation process only causes a degradation of
less than 100MB/s, shown in Figure 12b. After the mirror
generation completes, we set the original device to faulty. As
shown in Figure 12c, the device failure in the pre-failure recov-
ery process only causes 150MB/s of throughput degradation.
which is subtle compared to that of the post-failure recovery
mechanism. Note that the throughput increases a bit after the
mirror generation process completes due to the use of RAID1
as the mirror maintenance method. So in the left half of Figure
12c, where the mirror is already generated and maintained, the
performance is about 150 MB/s higher than that in Figure 12b.

Degradation Time Evaluation: In this part, we compared
the degradation time of the two mechanisms. Results are
shown in Table II. We first test the degradation time with-
out foreground workload (i.e., idle state). In this case, the
degradation takes a similar time under both mechanisms.
Both degradation periods last for about 11 minutes. A shorter
degradation duration may be achieved by adopting a more
aggressive recovery strategy theoretically since the bandwidth
utilization under both circumstances is far less than the maxi-
mum. With a shortened degradation duration, our mechanism
is more favorable compared to the post-failure recovery since
the RAID1’s replica-based recovery is theoretically simpler
than a parity-based recovery. But here we adopt the default
mdadm configuration, which is conservative and tries not to
occupy too much of the system resources. Then we set a FIO-
random-read workload as the foreground workload. The FIO
workload is set to acquire the maximum available throughput
of the RAID system (i.e., 32 threads with a queue depth of
16) to keep the RAID system busy. In this case, the pre-failure
recovery mechanism’s degradation time still lasts for 11 min-
utes. However, the post-failure recovery process takes about 41
minutes, which is significantly extended. The recovery process
of RAID1 (i.e., mirror generation process) is simpler than
the parity calculation of RAID5, which guarantees a faster
recovery.

TABLE II: Degradation time. The foreground workload is a
4KB-random-read workload.

Pre-failure Post-failure
Recovery Recovery

Without foreground workload 11min 11min
With foreground workload 11min 41min

In conclusion, degradation hardly exists in a pre-failure
recovery process, and the duration of degradation is also sig-
nificantly shortened. Note that though the pre-failure recovery
still lasts for tens of minutes or hours when the device capacity
comes to the terabyte level, the performance degradation is
subtle with pre-failure recovery. As a result, the pre-failure

recovery mechanism will have a relatively shorter degradation
duration with almost unnoticeable performance degradation.

B. Group Modeling Analysis

1) Prediction Evaluation: To validate the effectiveness of
our design in clusters, we replicate a failure prediction model
to explore how Precision and Recall really vary and what
benefits can be made in our design. We build the predic-
tion model using the Random Forest algorithm (ntrees=100,
max depth=50), which has been adopted by several previous
works to be the most effective algorithm currently available
in solving SSD failure prediction. Of the above parameters,
ntrees represents the trees to be generated when building the
model, and max depth represents the maximum depth of each
tree.

The data uses the publicly available dataset from Alibaba
[21], which contains about 700,000 SSDs as well as more
than 16,000 faulty SSDs. Through training, we are able to
obtain the probability that a sample will be identified as a
faulty device. As mentioned in Section III-B, by adjusting
the probability threshold, we are able to easily implement
adjustments to the model in terms of recall and precision. It is
important to note that the predictive model is not the focus of
our work, so we do not perform optimizations for the model
beyond the necessary steps mentioned earlier. Based on the
existing setting, we get results similar to most of the previous
work [15], [22]. The results are shown in Figure 13. First
of all, we can clearly see the “See-saw effect” of these two
indicators. It is difficult to reach a higher value at the same
time. In order to show the effect of our design, we choose
three typical points in the result, A, B and C in the figure.
The indicators corresponding to these three points are listed
in Figure 13.

These three points represent three different scenarios. Point
A represents the traditional prediction application scenario,
i.e., it is not desirable to have a situation where the health
device is misclassified. Point B, on the other hand, represents
the more balanced scenario, where recall and precision are
at a relatively high level. And point C is a more aggressive
high recall scenario mentioned in our design. Subsequent
experiments will be analyzed based on these three points to
reveal the superiority of our design.

2) Group Numeric Modeling: To evaluate our mechanism’s
advantage, we use previous results to calculate the reduction
of degradation time. Note that for a successful pre-failure
recovery, the performance degradation is subtle, as shown in
Section IV-A. Thus in this section, we only consider the post-
failure recovery’s degradation time as benefit.

Given prediction’s recall r, the reduced degradation time
can be calculated as treduced = r × nf × td, where nf is
the total number of failed devices in the whole data center;
and td is the average degradation time of the post-recovery
process. With the above experiment results, we set nf to
16,000, td to 11 minutes or 41 minutes. 16000 is the true
number of failed devices in the dataset. And 11 minutes and
41 minutes represent the degradation time with no foreground
load running and with foreground load running respectively.
For the three points mentioned in Section IV-B1, we compare
the benefit they get as well as the overhead. We define the
benefit as the reduction in total degradation time, i.e., how
long we are able to keep RAID systems out of degradation.
This is shown as a bar in the result. The overhead, on the
other hand, is the number of invalid backup devices, i.e., we
still backed up the device even though it didn’t finally fail. In
particular, it should be emphasized that these devices used for
backup are not discarded, even though the number of these
devices mentioned here is considered as overhead. They still
get into the cluster eventually for the next backup need.

As shown in Figure 14, Point B gains a large improvement
compared to Point A, with a reduction in degradation time
increase of more than 150%. However, the increase in the
number of invalid backup devices is only 481, which is almost
negligible compared to the overall 700,000 devices and 16,000
failed devices. The more aggressive Point C resulted in a 238%
revenue improvement and an overhead of 2,026 invalid backup
devices.

3) Trade Off Evaluation for Performance and Overhead:
As shown in the previous results in Figure 14, although
point C seems to bring higher benefits, it also brings much
higher overheads. Therefore, this section specifically discusses
how to select more appropriate model performance points.
In order to show further trends in benefits and overheads,
we selected 100 model performance points equally distributed
in Figure 13. The overheads they incurred and the benefits

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 6 7 8 9 10

T
h
ro

u
g

h
p

u
t

(M
B

/s
)

Time(s)

Device
Failure

(a) Device failure under post-failure recovery.

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 6 7 8 9 10

T
h
ro

u
g

h
p

u
t

(M
B

/s
)

Time (s)

Mirror
Generation

(b) Mirror generation beginning under pre-failure
recovery.

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 6 7 8 9 10

T
h
ro

u
g

h
p

u
t

(M
B

/s
)

Time (s)

Device
Failure

(c) Device failure under pre-failure recovery.

Fig. 12: Transient influence of device failure and mirror generation on 4KB-random-read throughput.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ec
is
io
n

Recall

C
BA

(P=1.0,R=0.16)

(P=0.93,R=0.40)

(P=0.81,R=0.54)

Fig. 13: Trends in precision and recall for different model
states. Three points are selected with their precision and recall
listed beside.

0

500

1000

1500

2000

2500

0
50000

100000
150000
200000
250000
300000
350000
400000

A B C

N
um

be
r o

f i
nv

al
id

 b
ac

ku
p

de
vi

ce
s

Re
du

ce
d

de
gr

ad
at

io
n

m
in

ut
es

Benefits w/o foreground workload Benefits w/ foreground workload
Overheads

Fig. 14: Comparison of benefits and overheads under group
numeric modeling.

improvement compared to point A were also calculated, as
shown in Figure 15.

0

2000

4000

6000

8000

10000

12000

0
50

100
150
200
250
300
350
400

N
um

be
r o

f i
nv

al
id

 b
ac

ku
p

de
vi

ce
s

%
 in

cr
ea

se
 c

om
pa

re
d

to
 p

oi
nt

 A

Recall 0 ⇢ 1

Benefits Overheads

Recommended
Configuration

Fig. 15: Comparison of benefits and overheads under group
numeric modelling. A recommended configuration point is
also given in the figure.

It can be seen that both of them show an upward trend
with the increase of recall. However, there is a significant
difference in the rate of changes. The further back the curve
goes, the faster the overhead grows, eventually even reaching
12,000 invalid backup devices. Figure 4 can explain that, when
we adjust the threshold in the hope of identifying all faulty
devices, we will inevitably judge some healthy devices as

faulty as well. And as the probability gets lower and lower,
more and more healthy samples are gathered, which leads to
more and more misclassified healthy samples. Therefore, we
recommend keeping the overhead to 5% of the failed devices,
in our case as 800 invalidly backed up device numbers, but
being able to gain a 184% benefit improvement.

V. RELATED WORKS

A. Storage Device Failure Prediction

Besides the traditional HDDs, flash-based SSDs are also
gaining wide adoption as storage devices [23], [24] and they
are also error-prone devices [25]. The current definition of
failure for storage devices can be classified into the following
two directions:

• Fail-stop: The device is not responding and the data in it
cannot be accessed [4], [13], [15], [21], [26]–[30].

• Fail-slow: The device can still be accessed, but the access
speed becomes extremely low, affecting normal workload
operation [31]–[34].

Both of these failures are relatively common in data center
scenarios.

1) Fail-stop: MVTRF [15] use multi-task learning to si-
multaneously predict the type of failure and when it will occur
through the same model. Chakraborttii et al. [13] proposed the
use of a one-classification model to improve the accuracy, ap-
plicability, and interpretability of the model, and evaluated the
performance of isolated forests. STREAMDFP [26] propose
a online failure prediction method with a real-time disk log
stream as input. The failure prediction implementation adopted
in this paper is a basic method and all works mentioned above
can be adopted in our methods with certain modifications.

2) Fail-slow: Gunawi et al. [32] explained in detail the
types of fail-slow manifestations in real production envi-
ronments. PERSEUS [33] utilizes a light regression-based
model to quickly identify and analyze fails-slow failures at
the granularity of the drive. IASO [34] works primarily on
timeout signals and converts them into stable and accurate
fault-slowness metrics. Since the fail-slow devices also require
to be replaced to avoid influencing QoS, our mechanism can
also apply to the fail-slow related scenarios.

B. RAID Optimization

Work on RAID in recent years has generally focused on
improving RAID performance and reducing recovery time.

1) Improving RAID Rerformance: Many existing works
focus on optimizing the normal performance of parity-based
RAID. NVM buffers are adopted in [35]–[37] to reduce parity-
caused read and write operations on back-end storage device.
ElasticRAID [38] and FusionRAID [39] propose to use a
replica-parity hybrid mechanism to provide high performance
with low space overhead. StRAID [40] improves the scalability
and parallelism of the Linux md RAID. Rep-RAID [41]
optimizes rubbish collection for RAID-enabled SSDs. Several
other works involve optimizing the degraded performance of
parity-based RAID. Short Code [42] proposes a RAID6 coding

mechanism that enables better degraded read performance.
dRAID [43] optimizes the degraded read under dis-aggregated
RAID. Our mechanism focuses on recovery and these works
can be used along with our mechanism.

2) Reduce Recovery Time: Many works [12], [44], [45]
propose to spread contents across the array, involving more
devices in the recovery process to accelerate the recovery. Our
mechanism can also be used with these works together since
they may accelerate both pre-failure recovery and post-failure
recovery. SSD-internal RAID recovery mechanism [11] is also
proposed to reduce recovery data amount, which is different
from our system-level RAID recovery mechanism.

VI. CONCLUSION

In this paper, we propose to use pre-failure recovery com-
bined with failure prediction technology instead of post-failure
recovery to reduce the degradation time of RAID systems.
A challenge is that current prediction methods’ emphasis on
precision and neglect of recall limits the pre-failure recovery’s
reduction in total degradation time. To solve this problem,
we propose a two-stage backup mechanism to enable the
improvement of recall in prediction while avoiding replacing
misclassified healthy storage devices. Exceptional cases are
also discussed to prove the robustness of the proposed method.
The evaluation shows that the two-stage backup mechanism
can have a significant reduction in degradation time in the
data center.

REFERENCES

[1] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redundant arrays
of inexpensive disks (raid),” in Proceedings of the 1988 ACM SIGMOD
international conference on Management of data, 1988, pp. 109–116.

[2] R. Wang, Y. Li, H. Xie, Y. Xu, and J. C. Lui, “Graphwalker: An i/o-
efficient and resource-friendly graph analytic system for fast and scalable
random walks,” in 2020 USENIX Annual Technical Conference, 2020,
pp. 559–571.

[3] J. Canny, H. Zhao, B. Jaros, Y. Chen, and J. Mao, “Machine learning at
the limit,” in 2015 IEEE International Conference on Big Data, 2015,
pp. 233–242.

[4] S. Maneas, K. Mahdaviani, T. Emami, and B. Schroeder, “A study of
ssd reliability in large scale enterprise storage deployments,” in 18th
USENIX Conference on File and Storage Technologies, 2020, pp. 137–
149.

[5] R. Kesavan, J. Hennessey, R. Jernigan, P. Macko, K. A. Smith, D. Ten-
nant, and V. Bharadwaj, “Flexgroup volumes: A distributed wafl file
system,” in 2019 USENIX Annual Technical Conference, 2019, pp. 135–
148.

[6] J. Li, P. Li, R. J. Stones, G. Wang, Z. Li, and X. Liu, “Reliability
equations for cloud storage systems with proactive fault tolerance,” IEEE
Transactions on Dependable and Secure Computing, vol. 17, no. 4, pp.
782–794, 2018.

[7] M. H. Tong, R. L. Grossman, and H. S. Gunawi, “Experiences in
managing the performance and reliability of a large-scale genomics
cloud platform,” in 2021 USENIX Annual Technical Conference, 2021,
pp. 973–988.

[8] S. Wu, H. Li, B. Mao, X. Chen, and K.-C. Li, “Overcome the gc-induced
performance variability in ssd-based raids with request redirection,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 38, no. 5, pp. 822–833, 2018.

[9] Y. Kim, J. Lee, S. Oral, D. A. Dillow, F. Wang, and G. M. Shipman,
“Coordinating garbage collectionfor arrays of solid-state drives,” IEEE
Transactions on Computers, vol. 63, no. 4, pp. 888–901, 2012.

[10] M. Hao, G. Soundararajan, D. Kenchammana-Hosekote, A. A. Chien,
and H. S. Gunawi, “The tail at store: A revelation from millions of hours
of disk and ssd deployments,” in 14th USENIX Conference on File and
Storage Technologies, 2016, pp. 263–276.

[11] D. Hong, K. Ha, M. Ko, M. Chun, Y. Kim, S. Lee, and J. Kim, “Reparo:
A fast raid recovery scheme for ultra-large ssds,” ACM Transactions on
Storage, vol. 17, no. 3, pp. 1–24, 2021.

[12] G. Zhang, Z. Huang, X. Ma, S. Yang, Z. Wang, and W. Zheng, “Raid+:
Deterministic and balanced data distribution for large disk enclosures,”
in 16th USENIX Conference on File and Storage Technologies, 2018,
pp. 279–294.

[13] C. Chakraborttii and H. Litz, “Improving the accuracy, adaptability, and
interpretability of ssd failure prediction models,” in Proceedings of the
11th ACM Symposium on Cloud Computing, 2020, pp. 120–133.

[14] J. Xiao, Z. Xiong, S. Wu, Y. Yi, H. Jin, and K. Hu, “Disk failure
prediction in data centers via online learning,” in Proceedings of the
47th International Conference on Parallel Processing, 2018, pp. 1–10.

[15] Y. Zhang, W. Hao, B. Niu, K. Liu, S. Wang, N. Liu, X. He, Y. Gwon, and
C. Koh, “Multi-view feature-based ssd failure prediction: What, when,
and why,” in 21st USENIX Conference on File and Storage Technologies,
2023, pp. 409–424.

[16] S. Lu, B. Luo, T. Patel, Y. Yao, D. Tiwari, and W. Shi, “Making disk
failure predictions smarter!” in 18th USENIX Conference on File and
Storage Technologies, 2020, pp. 151–167.

[17] “Wikipedia. S.M.A.R.T.” https://en.wikipedia.org/wiki/S.M.A.R.T.
[18] A. Liaw, M. Wiener et al., “Classification and regression by randomfor-

est,” R news, vol. 2, no. 3, pp. 18–22, 2002.
[19] “Linux. Linux raid.” https://raid.wiki.kernel.org/index.php/Linux Raid.
[20] “Jens Axboe. FIO: Flexible I/O Tester.” https://github.com/axboe/fio.
[21] S. Han, P. P. Lee, F. Xu, Y. Liu, C. He, and J. Liu, “An in-depth study of

correlated failures in production ssd-base data centers,” in 19th USENIX
Conference on File and Storage Technologies, 2021, pp. 417–429.

[22] F. Xu, S. Han, P. P. Lee, Y. Liu, C. He, and J. Liu, “General feature
selection for failure prediction in large-scale ssd deployment,” in 51st
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, 2021, pp. 263–270.

[23] L. Shi, J. Li, C. J. Xue, C. Yang, and X. Zhou, “Exlru: a unified
write buffer cache management for flash memory,” in Proceedings of
the Ninth ACM International Conference on Embedded Software, 2011,
p. 339–348.

[24] C. Gao, L. Shi, C. Ji, Y. Di, K. Wu, C. J. Xue, and E. H.-M. Sha,
“Exploiting parallelism for access conflict minimization in flash-based
solid state drives,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 37, no. 1, pp. 168–181, 2018.

[25] L. Shi, Y. Di, M. Zhao, C. J. Xue, K. Wu, and E. H.-M. Sha, “Exploiting
process variation for write performance improvement on nand flash
memory storage systems,” IEEE Transactions on Very Large Scale
Integration Systems, vol. 24, no. 1, pp. 334–337, 2016.

[26] S. Han, P. P. Lee, Z. Shen, C. He, Y. Liu, and T. Huang, “Toward
adaptive disk failure prediction via stream mining,” in 2020 IEEE 40th
International Conference on Distributed Computing Systems, 2020, pp.
628–638.

[27] E. Xu, M. Zheng, F. Qin, Y. Xu, and J. Wu, “Lessons and actions: What
we learned from 10k ssd-related storage system failures,” in USENIX
Annual Technical Conference, 2019, pp. 961–976.

[28] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “A large-scale study of
flash memory failures in the field,” ACM SIGMETRICS Performance
Evaluation Review, vol. 43, no. 1, pp. 177–190, 2015.

[29] B. Schroeder, R. Lagisetty, and A. Merchant, “Flash reliability in pro-
duction: The expected and the unexpected,” in 14th USENIX Conference
on File and Storage Technologies, 2016, pp. 67–80.

[30] I. Narayanan, D. Wang, M. Jeon, B. Sharma, L. Caulfield, A. Sivasub-
ramaniam, B. Cutler, J. Liu, B. Khessib, and K. Vaid, “Ssd failures in
datacenters: What? when? and why?” in Proceedings of the 9th ACM
International on Systems and Storage Conference, 2016, pp. 1–11.

[31] R. Lu, E. Xu, Y. Zhang, F. Zhu, Z. Zhu, M. Wang, Z. Zhu, G. Xue,
J. Shu, M. Li et al., “From missteps to milestones: A journey to practical
fail-slow detection,” ACM Transactions on Storage, vol. 19, no. 4, pp.
1–28, 2023.

[32] H. S. Gunawi, R. O. Suminto, R. Sears, C. Golliher, S. Sundararaman,
X. Lin, T. Emami, W. Sheng, N. Bidokhti, C. McCaffrey et al.,
“Fail-slow at scale: Evidence of hardware performance faults in large
production systems,” ACM Transactions on Storage, vol. 14, no. 3, pp.
1–26, 2018.

[33] R. Lu, E. Xu, Y. Zhang, F. Zhu, Z. Zhu, M. Wang, Z. Zhu, G. Xue,
J. Shu, M. Li et al., “Perseus: A fail-slow detection framework for
cloud storage systems,” in 21st USENIX Conference on File and Storage
Technologies, 2023, pp. 49–64.

[34] B. Panda, D. Srinivasan, H. Ke, K. Gupta, V. Khot, and H. S. Gunawi,
“Iaso: A fail-slow detection and mitigation framework for distributed
storage services,” in 2019 USENIX Annual Technical Conference, 2019,
pp. 47–62.

[35] J. Colgrove, J. D. Davis, J. Hayes, E. L. Miller, C. Sandvig, R. Sears,
A. Tamches, N. Vachharajani, and F. Wang, “Purity: Building fast,
highly-available enterprise flash storage from commodity components,”
2015, p. 1683–1694.

[36] S. Im and D. Shin, “Flash-aware raid techniques for dependable and
high-performance flash memory ssd,” IEEE Transactions on Computers,
vol. 60, no. 1, pp. 80–92, 2010.

[37] C.-C. Chung and H.-H. Hsu, “Partial parity cache and data cache
management method to improve the performance of an ssd-based raid,”
IEEE Transactions on Very Large Scale Integration Systems, vol. 22,
no. 7, pp. 1470–1480, 2013.

[38] Z. Gu, J. Li, Y. Peng, Y. Liu, and T. Zhang, “Elastic raid: Implementing
raid over ssds with built-in transparent compression,” in ACM Interna-
tional Conference on Systems and Storage, ser. SYSTOR ’23, 2023, p.
83–93.

[39] T. Jiang, G. Zhang, Z. Huang, X. Ma, J. Wei, Z. Li, and W. Zheng, “Fu-
sionraid: Achieving consistent low latency for commodity ssd arrays,”

in 19th USENIX Conference on File and Storage Technologies, 2021,
pp. 355–370.

[40] S. Wang, Q. Cao, Z. Lu, H. Jiang, J. Yao, and Y. Dong, “Straid: Stripe-
threaded architecture for parity-based raids with ultra-fast ssds,” in 2022
USENIX Annual Technical Conference, 2022, pp. 915–932.

[41] J. Li, B. Gerofi, F. Trahay, Z. Cai, and J. Liao, “Rep-raid: An integrated
approach to optimizing data replication and garbage collection in raid-
enabled ssds,” in Proceedings of the 24th ACM SIGPLAN/SIGBED Inter-
national Conference on Languages, Compilers, and Tools for Embedded
Systems, 2023, pp. 99–110.

[42] Y. Fu, J. Shu, X. Luo, Z. Shen, and Q. Hu, “Short code: An efficient
raid-6 mds code for optimizing degraded reads and partial stripe writes,”
IEEE Transactions on Computers, vol. 66, no. 1, pp. 127–137, 2017.

[43] J. Shu, R. Zhu, Y. Ma, G. Huang, H. Mei, X. Liu, and X. Jin,
“Disaggregated raid storage in modern datacenters,” in Proceedings
of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 3, ser.
ASPLOS 2023, 2023, p. 147–163.

[44] G. Alverez, W. Burkhard, L. Stockmeyer, and F. Cristian, “Declustered
disk array architectures with optimal and near-optimal parallelism,”
in Proceedings. 25th Annual International Symposium on Computer
Architecture, 1998, pp. 109–120.

[45] X. Luo, J. Shu, and Y. Zhao, “Shifted element arrangement in mirror
disk arrays for high data availability during reconstruction,” in 2012 41st
International Conference on Parallel Processing, 2012, pp. 178–188.

