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Abstract—Key-value storage systems based on LSM-tree ex-
hibit superior write performance, making them a popular choice
as the underlying storage engine for various Internet applications.
However, compaction operations, responsible for maintaining the
pyramidal storage structure of the LSM-tree to ensure acceptable
read performance, pose significant performance bottlenecks. As
high-performance storage devices like NVMe SSD are integrated
into LSM-tree, the KV storage system obtains a huge perfor-
mance improvement. Meanwhile, these fast I/O devices magnify
the computational resource consumption of compaction when
KV is small and medium, shifting the bottleneck from I/O to
computation.

In this paper, we focus on leveraging GPU to accelerate the
compaction of LSM storage engines built on high-performance
SSDs when the size of KV is small and medium, eliminating
the computational bottleneck of compaction. Specifically, we
design efficient GPU compaction units for each process of
compaction, introducing a hierarchical acceleration strategy for
different compaction levels. Additionally, We design two SSD-
GPU data transfer mechanisms, the Pipeline mechanism, and
the P2P mechanism, to minimize the data transfer overhead
during compaction. We implement the proposed GPU-accelerated
compaction strategy based on LevelDB and compare its perfor-
mance with naive CPU compaction strategy and the state-of-the-
art GPU-accelerated Compaction method, LUDA. Compared to
CPU-based method and LUDA, the compaction performance is
improved by up to 3.61x/2.24x, the write throughput is improved
by up to 2.34x/1.51x and the mixed read/write throughput is
improved by up to 2.02x/1.30x, respectively.

Index Terms—Key-value store, LSM-tree, Compaction, GPU,
GPUDirect Storage

I. INTRODUCTION

The Log-Structured Merge tree (LSM-tree) [1] stands out
as one of the predominant persistent Key-Value (KV) storage
structures in modern storage systems. It serves as the underly-
ing storage engine in various contemporary systems, owing to
its exceptional write performance. LSM-tree-based KV storage
systems are widely employed in various internet applications,
such as online e-commerce services [2], social networks [3],
and more. Common LSM-tree-based KV storage systems, such
as LevelDB [4], RocksDB [5], and Cassandra [6], maintain
a tiered, multi-level ordered storage structure on persistent
storage devices like HDDs or SSDs. In this structure, new
data is initially written to the upper-level. When the upper-
level approaches its capacity threshold, a compaction operation
is triggered. This operation involves merging KV from two
adjacent levels into the next level. Compaction is to sustain

the pyramidal storage structure of the LSM-tree, ensuring
acceptable read performance, and managing storage costs by
performing garbage collection for expired and deleted data.

Compaction operations represent a significant performance
bottleneck in LSM-tree-based (KV) storage systems [7]–[9].
On one hand, untimely compaction can block the foreground
thread’s write operations, leading to a decrease in writing
performance, called write stalls. On the other hand, com-
paction itself is resource-intensive, involving substantial I/O
and computational overhead. It requires reading numerous
Sorted Strings Table files (SST files, containing key/value
string pairs in LSM-tree) from the storage device, parsing
KV pairs from all files, reordering all KV pairs, and then
generating new SST files before writing them back to the
storage device. Consequently, compaction competes fiercely
for resources with write and read requests, undermining the
system’s overall throughput.

In this paper, we mainly focus on accelerating compaction,
reducing the blocking time of the writing operations of the
foreground threads, and alleviating the write stalls. In recent
years, the emergence of high-performance storage devices
(such as SATA SSD, NVMe SSD) has brought a huge perfor-
mance improvement to the KV storage systems [10], [11]. The
application of these storage devices to the LSM-tree storage
engine can greatly alleviate its I/O bandwidth bottleneck but
also magnifies the computational resource consumption of
compaction.
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Fig. 1: The breakdown of LSM Compaction based on three
storage devices (Value Size = 32)



Fig. 1 shows the profiling of compaction operation in
LevelDB [4] from IO and computation for different types
of storage devices. With HDD, SATA SSD, and NVMe SSD
(INTEL OPTANE SSD) as back-end storage devices, the com-
putation time percentage of compaction are 20.33%, 31.65%,
and 76.34%, respectively. This observation underscores that,
on high-performance storage devices, the bottleneck for com-
paction has shifted towards computation.

Further, we profile the compaction task for various value
sizes on the high-performance SSD (i.e., INTEL OPTANE
SSD), as depicted in Fig. 2. For smaller value sizes, such as
32 bytes, 64 bytes, computation consumes close to 70% of the
time. In the case of medium-sized KV pairs (128 bytes and
256 bytes), computation accounts for approximately 60% of
the total time. This analysis indicates a significant potential
for accelerating the computation in compaction. However, as
the value size increases, the percentage of IO operation (i.e.,
reading and writing SST files) time grows, and compaction be-
comes IO-bound. Consequently, accelerating the computation
in compaction becomes less effective in these scenarios.
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Fig. 2: The breakdown of LSM Compaction based on INTEL
OPTANE (Key Size = 16 bytes)

Therefore, we focus on accelerating compaction in LSM
storage engines built on high-performance commercial SSDs
when dealing with small to medium-sized KV, eliminating
the computational bottleneck of compaction. Prior work [9],
[12] have emphasized that using multiple threads to speed
up compaction can heavily consume CPU resources, leading
to competition with foreground read/write requests and an
overall performance degradation. To overcome these chal-
lenges, hardware acceleration methods such as FPGA [9]
and DPU [12] have been proposed. However, programming
FPGAs can be challenging, and DPUs might lack the com-
putational power needed for compaction task. GPUs pos-
sess significant computational power, hardware concurrency,
and a programming-friendly environment, making them well-
suited for handling the compaction task efficiently. Notably,
LUDA [13] introduced GPU acceleration for compaction,
although it did not fully leverage the GPU for the entire
Compaction process. Instead, it still relied on the CPU for
sorting key-value pairs, resulting in high CPU-GPU data

transmission overhead. Additionally, it did not effectively
address the data transmission overhead between SSD and
GPU, limiting its acceleration impact. Moreover, GPUs have
been widely utilized to accelerate KV storage systems and
databases [14], [15]. For instance, Mega KV [14] maximized
the high memory bandwidth and latency-hiding capabilities of
GPUs, achieving a high-performance and high-throughput in-
memory KV system. OurRocks [15] directly offloaded scan
operations to the GPU in a write-optimized database system,
accelerating analytic queries. This highlights the potential and
value of GPU-accelerated databases and storage systems.

Utilizing GPUs to accelerate compaction poses two primary
challenges: 1) Efficient Compaction Unit Design. Designing
efficient compaction units is essential for swift compaction
operations and harnessing the full potential of hardware ac-
celeration. 2) Dealing additional Data Transfer Overhead.
The introduction of GPUs adds additional complexity in data
transfers. When GPU is integrated into the compaction pro-
cess, data must be transferred from the storage device to GPUs
for processing. Subsequently, the computed results need to be
transferred back from the GPU to the storage device. Reducing
the overhead associated with moving data between storage
and GPUs, is essential for achieving an efficient compaction
process.

Building upon these challenges and insights, our proposal
focuses on leveraging GPUs to accelerate LSM compaction.
Our contributions can be outlined as follows:

• We design efficient GPU compaction units for each stage
of compaction, including units for parsing key-value pairs
from SST files, parallel sorting of key-value pairs, and
generating new SST files (encompassing data blocks, the
index block, and the Bloom filter block).

• We design a hierarchical acceleration strategy for the
compaction tasks at different levels. For the upper-level
compaction tasks (i.e., L0→L1, L1→L2), we introduce
a quick compaction strategy (Q-Compaction), where all
compaction processes are executed on the GPU to ensure
quick merging of the upper-level SST files. For the
lower-level compaction tasks, we propose a CPU-GPU
cooperative compaction strategy (C-Compaction). Here,
the GPU accelerates the parsing and sorting of key-value
pairs, while the CPU performs garbage collection for
expired and deleted key-value pairs. Subsequently, the
garbage-collected key-value pairs are again passed to the
GPU for generating the new SST files.

• We design two data transmission mechanisms aimed at
reducing data transfer overhead: the Pipeline mechanism
and the SSD-GPU P2P mechanism. The Pipeline mecha-
nism utilizes CUDA streams to overlap data transmission
and computing operations. The SSD-GPU P2P mecha-
nism utilizes Nvidia GPUDirect Storage [16] to establish
a direct data transfer path between GPU memory and
PCIe SSD, eliminating redundant data transfers.

• We implement the GPU-accelerated compaction based
on LevelDB and compare the performance of our pro-
posed strategy with naive CPU compaction strategy and



the state-of-the-art GPU-accelerated Compaction method
LUDA. Notably, our acceleration strategy is adaptable
to any LSM-Tree storage system. Compared to CPU-
based method and LUDA, our compaction performance
demonstrates improvements of up to 3.61x/2.24x, write
throughput enhancements of up to 2.34x/1.51x, and
mixed read/write throughput improvements of up to 2.02x
and 1.30x, respectively.

II. BACKGROUND

A. LevelDB, LSM-Tree and Compaction

LevelDB is a persistent key-value storage system with LSM-
Tree as the underlying storage engine. As shown in Fig. 3,
the new data is first written to a data structure in memory
(the SkipList, called Memtable), which switches to a read-
only mode (called Immutable Memtable) when the Memtable
reaches its capacity threshold. The background thread serial-
izes the Immutable Memtable into a Sorted String Table file
(SST file) and writes it to the top-level structure of the LSM
Tree, which is called a Flush operation.
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Fig. 3: The architecture of LevelDB

LSM is a pyramidal, multi-level ordered storage structure,
with the size of each level growing exponentially. Once
the upper-level structure reaches the capacity threshold, an
operation called compaction is triggered which selects the
overlapping SST files of two adjacent levels, parses all the
key-value pairs in the files, and reorders them, then generates
new SST files and writes them to the next level.

B. SST file

The SST file is persistent in the LSM-tree, which stores an
ordered sequence of key-value pairs. The layout of the SST file
is shown in Fig. 4. SST File consists of three types of blocks:
the Data block, the Bloom Filter block, and the Index block.
The key-value pairs are formed into Datablock in a “prefix-
compressed” format. Data blocks are independent of each
other. Further, the data block is organized into separate groups
(KV Group). Prefix compression means that the adjacent keys
in each group share the same prefix to save storage space.
The first key in a key-value group is called the restart point,
and the restart point does not share prefixes with other keys.
A new restart point will be created for every fixed number
of key-value pairs, and this fixed number is called the restart

point interval. For example, KV1 in Fig. 4 is the restart point,
and the restart point interval is 4.

Bloom filter [17] is essentially a bit vector and several hash
functions. When inserting a key, the key is first hashed by
using the hash functions to obtain multiple hash values, and
the bits in the bit vector with the corresponding indexes are
set to 1. When searching, the Bloom filter will check whether
the corresponding bits are 1. If any of these bits is 0, the key
must not exist. If all of them are 1, the element may exist. The
Bloom filter used in LevelDB is to speed up the query of key-
value pairs. If the Bloom filter determines that the key-value
pair to be queried does not exist, there is no need to search
for the corresponding data block.

The Index block in the SST file is used to store the index
information of all data blocks and is still stored in the form of
key-value pairs. The number of key-value pairs in the Index
block is equal to the number of data blocks. The key in the
index block is the largest one in the corresponding data block,
and the value is the offset and length of the corresponding
data block in the SST file. Different from the data block, the
restart point interval in the index block is fixed at 1, that is,
each key-value pair is an independent restart point.
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Fig. 4: The layout of SST file and Datablock

Compaction is divided into four steps: 1) Parse key-value
pairs. This step deserializes the SST files and parses all the
key-value pairs. Parsing key-value pairs is a highly parallel
task, matching the GPU. 2) Sort key-value pairs. This step
sorts key-value pairs with overlapping ranges to keep them
completely ordered. 3) Merge and garbage collect key-value
pairs. In this step, LSM will merge and clean up the expired
data for all key-value pairs to facilitate the generation of new
SST files. 4) Generate new SST files and write them to the
storage device. This process needs to generate three types of
blocks: Data block, Bloom Filter block, and Index block.

C. Nvidia GPUDirect Storage

Nvidia GPUDirect Storage [16] (GDS) is a technology
enabling a direct data transfer path between GPU memory and
PCIe storage device based on Nvidia GPUDirect RDMA [18].
GDS transfers the data by direct memory access (DMA) with-
out burdening the CPU. In GPU applications involving disk
IO, data has to be loaded from the disk to the main memory
and then transferred from the main memory to the GPU



memory. Redundant data transfers increase latency, especially
for applications like compaction that require transferring large
amounts of data. GDS applied to accelerate compaction will
provide higher data throughput and better utilization of GPU
resources.

III. DESIGN

A. Overview

The design of GPU-accelerated compaction comprises three
main components:

1) Efficient GPU Compaction Units: In the steps of com-
paction, there is a notable concurrency in the tasks of parsing
key-value pairs, sorting key-value pairs, and generating new
SST files, making them all suitable for GPU acceleration.
As detailed in Section III-B, we have designed three GPU
Compaction Units: Unpack Unit, Sort Unit, and Pack Unit. The
Unpack Unit is to parse key-value pairs from SST files, the
Sort Unit sorts all key-value pairs, and the Pack Unit generates
new SST files, including data blocks, the index block, and the
Bloom filter block.

2) Hierarchical acceleration strategy: In the compaction
process, the merging and garbage collection of key-value pairs
primarily involve serial logic, making them unsuitable for GPU
acceleration. To address this, we propose two GPU-accelerated
compaction strategies: Quick-Compaction (referred to as Q-
Compaction) and Cooperative-Compaction (referred to as C-
Compaction), as illustrated in Fig. 5.

Q-Compaction is designed for upper-level compaction tasks,
specifically L0 to L1 and L1 to L2. The latency of these upper-
level compaction tasks plays a crucial role in alleviating write
stalls in LSM. To minimize latency, we leverage the GPU
to accelerate all processes involved in these compaction tasks,
including parsing key-value pairs, sorting, and generating SST
files. To avoid impacting the performance of Q-Compaction,
we deliberately exclude garbage collection for expired and
deleted key-value pairs within Q-Compaction. This choice
comes at the expense of a slight increase in storage space
waste.

C-Compaction is assigned to handle the lower-level com-
paction tasks. In contrast to Q-Compaction, C-Compaction
retains the garbage collection function inherent in the native
compaction process. It first initiates GPU acceleration for two
primary processes: parsing key-value pairs and sorting them.
Subsequently, the sorted key-value pairs are transferred back to
the main memory, where the CPU performs garbage collection
for expired and deleted key-value pairs. The garbage-collected
key-value pairs are then fed back to the GPU for the generation
of new SST files. Finally, the freshly generated SST files
are written to the storage device. Both Q-Compaction and C-
Compaction share the same GPU Compaction Unit.

3) Data transmission mechanism: While the GPU can
accelerate the computational processing of compaction, trans-
ferring SST files from SSD to GPU introduces new overhead.
Efficient data transmission mechanism is crucial not only for
reducing the time overhead of compaction tasks but also for
making optimal use of GPU resources. We design two data
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transmission mechanisms based on hardware characteristics:
the Pipeline mechanism and the SSD-GPU P2P mechanism,
as detailed in Section III-C.

B. GPU Compaction Units

1) Unpack Unit: As depicted in Fig.4, the SST file com-
prises multiple independent data blocks, each containing sev-
eral distinct groups (KV groups). Within each KV group,
adjacent keys share the same prefix. Consequently, the KV
group serves as the smallest independent task unit. We employ
a GPU thread to parse a KV group, with a one-dimensional
thread block assigned to parsing a data block. A thread grid,
comprising multiple one-dimensional thread blocks, concur-
rently parses key-value pairs in an SST file. To enhance the
concurrency of unpack operations, CUDA Streams are utilized
to launch multiple GPU thread grids, enabling the parsing
of key-value pairs in multiple SST files simultaneously and
achieving grid-level parallelism. An overview of the Unpack
Unit is presented in Fig.6.
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All the parsed key-value pairs are placed into an array,
where the key-value pairs from the same SST file are ordered,
and key-value pairs from different SST files may overlap. In
this array, the elements of the key-value pairs include the full
key, not the complete value. Instead, the offset and size of the
value in the corresponding SST file are included to economize
on the cost of data copying in subsequent operations.

2) Sort Unit: In LSM, the keys in each SST file are ordered.
The SST files belonging to the L0 level obtained by the Flush
operation are partially ordered, and there is an overlap in the
range of keys between each SST file. The remaining levels
(i.e., L1, L2, L3, etc.) have ordered keys for the entire level.
Therefore, after parsing the key-value pairs, the arrays need to
be sorted to ensure that the newly generated SST files remain
fully ordered, maintaining an acceptable read performance.

The sorting of key-value pairs in the compaction operation
can be conceptualized as merging multiple ordered arrays,
ultimately converging into a fully ordered array. We implement
the merging of multiple ordered key-value pair arrays on the
GPU using a binary search, as illustrated in Algorithm 1.

Algorithm 1 Merge multiple ordered key-value pair arrays

Input: Key-value pairs arrays SST0, SST1, . . . , SSTn

Output: Fully ordered Key-value pairs array Array
1: for each GPU thread do
2: idx = blockIdx.x× blockDim.x+ threadIdx.x
3: j = Current array Id
4: KV j

idx = SSTj [idx]
5: IArray = 0 ▷ Initialize the index of KV j

idx in Array
6: for i = 0 to n do
7: if (i == j) then
8: I = idx
9: else

10: I = BinarySearch(KV j
idx, SSTi)

11: end if
12: IArray : + = I
13: end for
14: end for
15: Array[IArray] = KV j

idx

16: return Array

We assign a GPU thread to calculate the index of the
corresponding key-value pair in the final key-value pair array,
establishing a one-to-one correspondence between the key-
value pair and the GPU thread. For the key-value pair KV j

idx

belonging to SSTj (Line 4), its index in SSTj is the same as
the GPU thread’s index (i.e., idx) (Line 8). We use binary
search to obtain the indexes I0idx, I

1
idx, . . . , I

j−1
idx , Ij+1

idx , Inidx
when KV j

idx is inserted into other key-value pair arrays
(i.e., SST0, SST1, . . . , SSTj−1, SSTj+1, SSTn), respectively
(Line 10). In this case, the index of KV j

idx in the final array
is IArray =

∑n
j=0 I

j
idx (Line 12). Binary search inherently

exhibits parallelism. And the key stored in the SST file is
called Internal Key, which consists of User Key, Sequence
Number and ValueType. Internal Key is unique. Even if User
Key is the same, the corresponding Internal Key is different

because Sequence Number and ValueType are different. There-
fore, the calculation of the final index for each key-value pair
is independent. Consequently, we concurrently calculate the
final index of all key-value pairs and write the results into the
final array Array.

3) Pack Unit: As depicted in Fig. 4, the SST file comprises
data blocks, an index block, a Bloom filter block, and a
footer. Among these, the generation of data blocks, the index
block, and the Bloom filter block is the most time-consuming
process. Therefore, Pack Unit primarily focuses on the parallel
generation of these components—data blocks, the index block,
and the Bloom filter block.

• Generate data blocks.
Data blocks are utilized to store the actual KV pairs
and consist of independent KV pairs groups (KV group),
where adjacent keys in the group share the same prefix.
The number of KV pairs in a KV group is referred to as
the restart point interval. Similar to parsing data blocks
(as shown in Fig.6), generating a KV group remains the
smallest independent task in the process of generating
data blocks. Consequently, we still employ a GPU thread
to generate a KV group, as illustrated in Fig.7. The
process of generating a KV group involves each GPU
thread obtaining the corresponding KV pairs as input
according to the restart point interval and performing
prefix compression on adjacent keys. A one-dimensional
thread block can generate a data block, and a thread
grid comprising multiple one-dimensional thread blocks
can concurrently generate all data blocks of an SST file.
Similarly, we use multiple CUDA Streams to launch
multiple thread grids, enabling the concurrent generation
of data blocks in multiple SST files.
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Fig. 7: The overview of the Pack Unit

• Generate the Index block
The index block takes a special form when the restart
point interval is set to 1, resembling a data block. The
number of KV pairs in an index block equals the number
of data blocks. In this scenario, the generation of an
index block can be accomplished using a one-dimensional
thread block. Each GPU thread calculates the largest key
in the corresponding data block and encodes its offset
and length into the value using variable-length encoding,
thereby generating the index block.

• Generate the Bloom filter block



Algorithm 2 Generate Bloom Filter block

Input: Key-Value pairs Array Array, Number of hash func-
tions K

Output: Bit Vector BitV ector
1: for each GPU thread do
2: idx = threadIdx.x
3: for i = 1 to K do
4: h = Bloomhash(Array[idx])
5: bytepos = h%ByteV ector Len
6: ByteV ector[bytepos] = 1
7: end for
8: syncthreads() ▷ Synchronize GPU threads
9: BitV ector Len = (ByteV ector Len+ 7)/8

10: if (idx < BitV ector Len) then
11: base = idx× 8
12: for j = 0 to 7 do
13: bytepos = base+ j
14: if (ByteV ector[bytepos] == 1) then
15: BitV ector[idx] : | = (1 << j)
16: end if
17: end for
18: end if
19: end for
20: return BitV ector

Generating the Bloom filter block in an SST file is
also a highly concurrent task because the calculation of
the hash functions for each key is independent. A one-
dimensional thread block is responsible for generating
a Bloom Filter block for all key-value pairs in a data
block. The algorithm for generating a Bloom filter block
is shown in Algorithm 2.
We utilize a GPU thread to calculate the K hash values
of the corresponding key, obtain the hash positions, and
store the results in a byte vector ByteV ector (Line
3 to 7), drawing inspiration from [19]. Here, a byte,
rather than a bit, represents a Boolean value (i.e., 0
and 1). In this case, we don’t need to adopt a GPU
thread synchronization strategy. Even if multiple GPU
threads modify the content of the same byte, there will
be no conflict since they write the same value (i.e., 1).
Subsequently, to conserve storage space, we use one-
eighth of the GPU threads to convert the byte vector
ByteV ector to a bit vector BitV ector (Line 9 to 18).

C. Reduce data transfer overhead between storage device and
GPU

1) Pipeline mechanism: In the pipeline mechanism, we
leverage CUDA streams to exploit the parallelism of three
operations: disk I/O, main memory-GPU memory copy, and
GPU computation. The overview of the Pipeline mechanism
is illustrated in Fig. 8.

After the first SST file is read from the SSD to the Main
memory, we use CUDA Stream to launch a Main memory-
GPU copy operation and execute the GPU kernel. CUDA
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Stream operates asynchronously to the host, allowing us to
read the next SST file and launch the second CUDA Stream
after the first CUDA Stream is initiated. This overlapping
of data transmission (i.e., Disk I/O and Main Memory-GPU
copy) and GPU computation operations enhances throughput.
Synchronization is necessary between different compaction
processes (i.e., unpack, sort, and pack). In the Pipeline mech-
anism, newly generated SST files are written to the storage
device after the SST files are copied from the GPU memory
to the main memory. The pipeline mechanism is universal
and imposes no specific requirements on storage devices and
GPUs.

2) SSD-GPU P2P mechanism: While the pipeline mecha-
nism mitigates some of the data transfer overhead, the data
transmission remains somewhat redundant. The SST file must
traverse the main memory to reach the GPU memory. As
outlined in Section 2.2, Nvidia GPUDirect Storage (GDS)
establishes a direct data transfer path between GPU memory
and the PCIe SSD when the GPU and the PCIe SSD share
the same PCIe Root Complex. GDS executes data transfer
via direct memory access (DMA), relieving the CPU from
the burden. The data transmission path of GPU-accelerated
compaction optimized with GDS is illustrated in Fig. 9.

The SST files will bypass the main memory and undergo
direct transfer to the GPU memory. Similarly, the SST files
generated in the GPU will be directly transmitted from the
GPU memory to the PCIe SSD, eliminating redundant data
transfers. Although the CPU retains control over GDS’s file
reading and writing operations, the data flow bypasses the
CPU. GDS uses direct IO mode instead of cache IO mode
when writing to the storage device. GDS has special require-
ments for GPU, and only Nvidia data center-level GPUs have
this function. Moreover, GDS requires data center-level SSDs
with PCIe interfaces, such as Intel OPTANE SSD.

D. Implementation

We implement GPU-accelerated compaction based on Lev-
elDB 1.23 [4], focusing primarily on enhancing write perfor-
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mance with minimal impact on read performance. To execute
compaction processes on the GPU, we allocate essential
resources, namely GPU memory and CUDA Streams. GPU
memory is utilized for storing input SST files, parsed key-
value pairs, newly generated SST files, and other metadata.
However, the overhead associated with frequent allocation and
release of GPU resources cannot be ignored. To address this,
we adopt a lazy allocation strategy—allocating all GPU re-
sources during key-value system initialization and deallocating
them upon system closure. For the SSD-GPU P2P mechanism,
we leverage the cuFileRead and cuFileWrite functions in
GDS [16] 1.7.2 (built-in CUDA 12.2) to facilitate the transfer
of SST files from the OPTANE SSD to the GPU and vice
versa, enabling efficient data exchange.

IV. EXPERIMENTS

A. Experimental Setup

We conduct our experiments on a server running Ubuntu
20.04.1 with the Linux kernel version 5.15.0. This server
is configured with two NUMA nodes, each containing a
CPU with 10 physical cores (Intel Xeon Silver 4210 @
2.20GHz) and 128GB of DRAM. Additionally, it is equipped
with various storage devices, including a 6TB SATA HDD
(Seagate ST6000NM0115), a 480GB SATA SSD (INTEL
SSDSC2BB48), and a 280GB NVMe SSD with a PCIe in-
terface (INTEL OPTANE SSD 900P). Furthermore, the server
features an Nvidia Quadro A6000 GPU with a 535.104.05
GPU driver, sharing the same PCIe Root Complex with the
OPTANE SSD.

KV System Configurations. Both the Memtable and SST
file sizes are configured to 8MB. The size of the L1 Level
is 64MB. The parameters related to the data block are
as follows: block restart interval is 4, block size is 32KB,
and the number of bits of the Bloom filter bloom bits
is 10. Default settings are used for parameters control-
ling the write rate: kL0 CompactionTrigger is set to 4,
kL0 SlowdownWritesTrigger to 8, and kL0 StopWritesTrigger
to 12.

Workloads and Baselines. We employ db bench with
LevelDB to evaluate various compaction strategies. Specifi-
cally, we assess the performance across three workloads: 1)
FillRandom: Involves the random insertion of key-value pairs.
2) ReadRandom: Focuses on randomly retrieving key-value
pairs. 3) ReadWriteMix: Involves both random retrieval and
insertion of key-value pairs, based on a specified get/insert
ratio. We primarily compare four compaction strategies: 1)
CPU-based Compaction: This serves as the default com-
paction strategy in LevelDB. 2) LUDA [13]: Represents
the state-of-the-art GPU-accelerated LSM strategy. 3) GPU
Comp-Pipe: Utilizes the Pipeline mechanism to minimize the
cost of data transmission. 4) GPU Comp-GDS: Implements
GDS to directly read SST files from OPTANE SSD and write
the generated SST files back to OPTANE SSD, aiming to
enhance the throughput of data transmission. To mitigate the
impact of Page Cache, we employ the Direct IO mode across
all strategies.

B. Evaluate Fillrandom workload

In this workload, we insert 200M key-value pairs with keys
uniformly distributed. The key size is fixed at 16 bytes. We
manipulate the size of the value in the key-value pairs to create
various experimental configurations. Specifically, the size of
the value ranges from 32 bytes to 256 bytes.

For each configuration, we maintain the number of levels
in the LSM-tree at 5. This ensures a comprehensive evalu-
ation of the proposed hierarchical acceleration strategy. We
conduct an analysis across several metrics, including com-
paction throughput, average throughput, real-time throughput,
workload latency, and GPU utilization.
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Fig. 10: Throughput of GPU-accelerated and CPU-based com-
pactions with different KV settings

1) The Throughput of Compaction: We measure the com-
paction throughput by considering the quantity of SST files
compacted per unit of time [20]. Fig. 10 illustrates the
compaction throughput of the four strategies across various
experimental configurations.

LUDA [13] exclusively leverages the GPU for accelerating
the parsing of key-value pairs and the generation of SST
files. This implies that the parsed key-value pairs need to
be transferred back to the main memory, where the CPU
performs sorting and performs garbage collection for expired
and deleted data. Subsequently, the ordered and garbage-
collected key-value pairs are transferred back to the GPU



for SST file generation. This process introduces two redun-
dant copies of data between the main memory and GPU.
Additionally, LUDA relies on the main memory as an inter-
mediate buffer for transferring SST files between the SSD
and GPU. Specifically, SST files are initially read from the
SSD to the main memory and then transferred from the main
memory to the GPU, incurring redundancy. As a consequence,
LUDA achieves a performance higher than CPU-based Com-
paction by 1.61x/1.52x/1.55x/1.55x when the value size is
32/64/128/256 bytes, respectively. Nevertheless, there remains
room for improvement in acceleration.

Both GPU Comp-Pipe and GPU Comp-GDS employing
a hierarchical acceleration strategy, including Q-Compaction
and C-Compaction. Q-Compaction executes all compaction
units (i.e., parsing key-value pairs, sorting, and generating new
SST files) on the GPU, ensuring the minimum compaction
latency. C-Compaction, similar to LUDA, involves CPU par-
ticipation but only in the garbage collection process, with
the sorting process being handled on the GPU, resulting in
improved efficiency compared with LUDA. This design elim-
inates some unnecessary data transfer overhead, contributing
to enhanced GPU-accelerated compaction performance.

Notably, GPU Comp-GDS utilizes GDS for P2P transfer of
SST files from the SSD to GPU memory, mitigating redundant
data transfer costs and achieving higher throughput, especially
with larger value sizes (e.g., 128 Bytes, 256 Bytes). Con-
sequently, GPU Comp-GDS outperforms CPU-based Com-
paction by 3.61x/3.28x/2.76x/2.30x when the value size is
32/64/128/256 bytes, respectively. Moreover, GPU Comp-GDS
achieves 2.24x/2.15x/1.78x/1.49x higher throughput compared
to LUDA, respectively. The gains from GDS are evident, with
GPU Comp-GDS improving by 61.28%, 66.70%, 59.65%, and
40.29% over GPU Comp-Pipe, respectively.
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Fig. 11: Throughput of Fillrandom with different KV settings

2) Average Fillrandom Throughput Analysis: In Fig. 11,
the average throughput (i.e., Operations written per second) of
random writes is depicted for the four compaction strategies
across different experimental configurations. The enhancement
in random write throughput is attributed to the improvement
in compaction throughput. Notably, when the value size is
relatively small (e.g., 32 Bytes, 64 Bytes), the SST file can
accommodate more key-value pairs, allowing for a larger
proportion of computation during compaction and provid-
ing more room for acceleration. In such scenarios, GPU-

accelerated compaction strategies achieve significant accel-
eration. As the value size increases (e.g., 128 Bytes, 256
Bytes), the costs associated with disk IO and data transfer
between main memory and GPU rise, reducing the effec-
tiveness of acceleration. However, GPU Comp-GDS demon-
strates further improvements in system performance through
the P2P data transfer mechanism, particularly in cases with
larger value sizes. Consequently, GPU Comp-GDS achieves
1.89x/2.27x/2.34x/1.99x higher throughput than CPU-based
Compaction and 1.25x/1.51x/1.51x/1.29x higher throughput
than LUDA, respectively. The gains from GDS are substantial,
with GPU Comp-GDS improving by 8.06%, 21.99%, 51.61%,
and 32.94% over GPU Comp-Pipe, respectively.
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(b) value-size: 64 Bytes
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(c) value-size: 128 Bytes
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Fig. 12: The Real-time Throughput of Fillrandom workload

3) Real-time Throughput Analysis: Fig. 12 shows the real-
time throughput of random writes for the four strategies.
Across all experimental configurations, CPU-based Com-
paction takes the longest time to finish writing 200M key-
value pairs, while GPU Comp-GDS takes the shortest time to



run. And CPU-based Compaction exhibits periodic instances
of write pauses, where the real-time throughput drops signifi-
cantly, attributed to untimely compaction blocking foreground
threads. The purpose of GPU-accelerated compaction is to re-
duce the delay of compaction by accelerating compaction and
reducing the blocking time of compaction on the foreground
write thread, alleviating write pauses.

In GPU-accelerated compaction strategies (LUDA, GPU
Comp-Pipe, and GPU Comp-GDS), the maximum allowable
number of SST files in compaction is set to 40 due to GPU
resource constraints. If the number of SST files exceeds 40, the
compaction switches to a CPU-based approach, introducing
some slight fluctuations in the throughput of GPU-accelerated
compaction strategies. Additionally, throughput fluctuations in
GPU Comp-Pipe and GPU Comp-GDS arise from the con-
version of Q-Compaction and C-Compaction. Overall, GPU
Comp-GDS exhibits consistently high overall throughput, and
even its lowest throughput surpasses the baselines by a con-
siderable margin. The rapid compaction in GPU Comp-GDS
ensures minimal write pauses, making it the most stable and
high-performing strategy.

4) Latency Analysis: Table I presents the write latency,
including Average Latency (Avg), P99 Tail Latency (P99), and
P99.9 Tail Latency (P999), with a key size of 16 bytes. Tail
latency is a critical factor that influences user experience in
applications. The results indicate that the key-value system,
integrated with the GPU-based compaction strategy, can sig-
nificantly optimize tail latency.

5) The GPU Usage Analysis: Fig. 13 illustrates the GPU
utilization of the GPU-accelerated compaction strategies when
running a Fillrandom workload. LUDA executes only two
compaction processes, parsing key-value pairs and SST files
generation, on the GPU, relying on the CPU to perform
sorting key-value pairs. Consequently, the GPU utilization is
lower compared to GPU Comp-Pipe and GPU Comp-GDS.
GPU Comp-Pipe and GPU Comp-GDS complete the entire
compaction process on the GPU, resulting in higher GPU
consumption. As the value size increases, the cost of data
transfer between SSD and GPU rises, leading to a decrease in
GPU utilization. However, GDS mitigates this cost, causing
only a negligible decrease in GPU utilization for GPU Comp-
GDS. The peak GPU utilization is 22.51%, indicating that
the GPU-accelerated Compaction strategy does not heavily
consume GPUs while achieving a significant performance
improvement.

C. Evaluate ReadRandom workload

In this workload, we initially insert 50 million key-value
pairs into the KV system and subsequently perform 30 million
queries (GET). Table II displays the read latency. GPU-
accelerated compactions, including LUDA, do not optimize
the query operation (GET) based on the GPU. Therefore, the
random read performance of a GPU compaction-based system
is barely affected compared to a CPU compaction-based
system. GPU-Comp Pipe and GPU-Comp GDS do not conduct
garbage collection during Q-Compaction, leading to higher

32B 64B 128B 256B
0

5

10

15

20

25

Value Size (Bytes)

G
PU

U
sa

ge
(%

)

LUDA GPU Comp-Pipe GPU Comp-GDS

Fig. 13: The GPU Usage of GPU-accelerated compaction
strategies

space amplification. Additionally, the GET operation might
need to traverse more SSTables to find the latest/valid key-
value pair in L1 and L2. This can degrade read performance
in certain cases. For instance, when the value size is 32 bytes,
GPU-Compaction Pipe exhibits a slight increase in average
latency and tail latency compared to CPU-based Compaction.

D. Evaluate ReadWriteMix workload

In this workload, we compare the performance of a mix
of write and read requests, keeping the key size fixed at
16 bytes and varying different write ratios and the size of
the value to create various experimental configurations. In all
tests, we first load 50 million key-value pairs into the key-
value storage system and then complete 100 million mixed
read/write requests. Fig. 14 illustrates the performance of all
configurations.

In LSM-Tree, the latency of read requests is typically higher
than that of write requests. Therefore, when the write ratio
is small, e.g., 50%, 70%, the ReadWriteMix workload leans
towards being read-heavy, while as the write ratio increases,
the ReadWriteMix workload becomes write-heavy. GPU-
accelerated compaction doesn’t optimize the query (GET).
Therefore, the performance enhancement of the ReadWriteMix
workload stems from write optimizations, particularly the
acceleration of compaction. Consequently, the performance
enhancement of the ReadWriteMix workload is significant
only when the write ratio is large.

As a result, when the write ratio is 99%, LUDA improves
by 43.35%/47.29%/52.42%/55.50% over CPU-based Com-
paction for value sizes of 32/64/128/256 bytes, respectively.
Similarly, GPU Comp-Pipe demonstrates improvements of
45.14%/47.29%/52.42%/65.49% over CPU-based Compaction
for the same value sizes. GPU Comp-GDS tends to per-
form optimally when the value size is large and the write
ratio is high, allowing GDS to achieve maximum gains.
When the write ratio is 99%, GPU Comp-GDS achieves
1.53x/1.74x/1.98x/2.02x higher throughput than CPU-based
Compaction, and 1.07x/1.18x/1.30x/1.30x higher throughput
than LUDA, respectively.



TABLE I: The write latency (µs) of four compaction strategies

Value Size
CPU-based Compaction LUDA GPU-Comp Pipe GPU-Comp GDS

Avg P99 P999 Avg P99 P999 Avg P99 P999 Avg P99 P999
32 4.875 5.833 1114.980 3.245 5.688 19.217 2.692 5.853 12.794 2.578 5.701 13.503
64 6.008 6.448 1139.174 4.006 6.378 1050.779 2.933 6.178 14.928 2.648 5.988 14.639

128 8.475 7.623 1164.857 5.471 7.362 1124.480 4.654 7.166 1097.097 3.627 6.892 1006.968
256 13.910 1005.193 1182.285 9.069 8.719 1167.709 8.397 8.414 1163.193 7.004 7.998 1151.458

TABLE II: The read latency (µs) of four compaction strategies

Value Size
CPU-based Compaction LUDA GPU-Comp Pipe GPU-Comp GDS

Avg P99 P999 Avg P99 P999 Avg P99 P999 Avg P99 P999
32 21.827 51.564 67.994 23.106 58.096 69.782 24.137 63.767 69.967 21.888 51.368 67.795
64 22.98 57.452 69.375 21.821 52.243 67.01 22.187 52.116 67.643 23.99 63.083 69.83

128 22.484 53.082 68.769 25.327 66.333 79.932 23.147 55.161 69.293 23.994 62.109 69.826
256 38.258 137.773 174.638 33.964 119.264 164.621 31.878 118.244 150.211 33.472 118.717 156.287
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Fig. 14: The Throughput of ReadWriteMix for four com-
paction strategies

V. RELATED WORK

Reducing the amount of IO of compaction or delaying the
execution of compaction: Wisckey [21] and HashKV [22] pro-
posed a strategy of separating Key and Value (KV separation
strategy). In this case, LSM only stores the address of the
value, which makes the entire LSM occupy a small storage
space and reduces IO during compaction. The KV separation
strategy is especially suitable for scenarios with large values
and heavy write workloads, but it does not perform well in
queries. PebblesDB [23] draws on the idea of SkipLists, inserts
Guard into LSM, and proposes a Fragmented Log-Structured
Merge Tree structure, which avoids a large amount of data
rewriting at the same LSM level and further improves write
throughput. Similarly, PebblesDB increases the query cost to
a certain extent. TRIAD [24] only flushes the cold data in the
Memtable to the disk and keeps the hot data in the Memtable
to avoid triggering a large number of compaction operations
on the disk. At the same time, it delays the compaction
operation until the compacted files have enough key overlaps.
However, delayed execution of compaction can only guarantee
high throughput in the early stage and will cause a large
number of high-level compactions in the later stage, which
will still undermine system throughput. Therefore, accelerating
compaction to ensure its timely completion is the key to
achieving long-term stable throughput.

Offloading or accelerating compaction and GPU-accelerated
KV storage systems and databases: The offloading compaction
strategy is usually used in distributed key-value storage sys-
tems. To prevent the compaction operation from occupying
the IO and computing resources of the datastore node, [25]
offloads the compaction operation to a dedicated compaction
server (Remote Compaction) so that the datastore node can
better serve read/write requests. For the same purpose, [8]
offloads compaction tasks to the FaaS (Functions as a Service)
cluster for execution (Faas Compaction). Compared with
Remote Compaction, Faas Compaction can provide more sta-
ble throughput for bursty workloads. Accelerated compaction
mainly occurs in stand-alone scenarios. High-performance
storage devices (such as SATA SSD, and NVMe SSD) make
the bottleneck of LSM’s compaction change from IO to com-
puting, providing space for accelerating the computing in com-



paction. For example, PCP [20] proposes to use the pipeline
mechanism to overlap the calculation and IO in the compaction
operation. Specialized acceleration hardware FPGA [9] and
DPU [12] are used to accelerate compaction, which reduces
the delay of compaction and prevents compaction from com-
peting with foreground read/write requests for CPU and IO
resources. In addition, LUDA [13] first proposed using GPU to
accelerate compaction, but it didn’t use the GPU to implement
the full Compaction process. It still relied on the CPU to sort
key-value pairs, resulting in high CPU-GPU data transmission
overhead, and did not effectively handle the data transmission
overhead between SSD and GPU, discounting the acceleration
effect. GPUs are also widely used to accelerate KV storage
systems and databases. Mega KV [14] took full advantage
of the high memory bandwidth and latency hiding capability
of GPUs, achieving a high-performance and high-throughput
in-memory KV system. OurRocks [15] offloaded the scan
operation directly to GPU in Write-optimized database sys-
tem, accelerating the analytic queries. In addition, OurRocks
resolved the data transfer bottleneck with DMA.

VI. CONCLUSION

In this paper, we focus on using GPU to accelerate the
compaction of LSM storage engines built on high-performance
SSDs, eliminating the computational bottleneck of com-
paction. We design efficient GPU compaction units for each
process of compaction. Based on that, we design a hierarchical
acceleration strategy for the compaction tasks at different
levels. We design two SSD-GPU data transfer mechanisms,
Pipeline mechanism and P2P mechanism, to reduce the data
transfer overhead during compaction. We compare the perfor-
mance of our proposed strategy with naive CPU compaction
strategy and the state-of-the-art GPU-accelerated Compaction
method LUDA. The evaluation results show that our proposed
compaction strategy can effectively improve compaction per-
formance and overall system performance.
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