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Abstract—The escalating power consumption in data-centers
poses a critical challenge, particularly with the surging com-
putational demand. While current research emphasizes AI and
accelerator power consumption, there exists a notable gap in
efforts to optimize on-premise storage server power usage, which
accounts for 25-30% of the power consumption in the data-center.

In this paper, we introduce PACER, a power-saving subsystem
for ARM-based, all-flash storage servers. PACER’s design is
based on a comprehensive analysis of the utilization and power
consumption of storage servers in data-centers. Unlike conven-
tional power-saving approaches, PACER is guided by storage
server-specific IO metrics, employs advanced monitoring to assess
the server’s operational state, and predicts the potential 10
performance impact of power-saving techniques. It navigates
the trade-off between performance and power-efficiency by
adhering to configurable performance tolerance boundaries. Our
contributions include a thorough analysis of data-center storage
servers, an efficient core resource manager for ARM-based
storage servers, and an I0-centric power-saving mechanism.

We extensively evaluate PACER with synthetic and real-
world workloads. In the evaluation of real-world traces, PACER
achieves a 1.23x higher IOPS/watt over the native system
implementation. In comparison, Linux’s on-demand governor
improves the IOPS/watt by a factor of 1.02x, while experiencing
higher average and tail 10 latencies than observed in PACER.
In the MLPerf Storage benchmark for 3D-UNET and BERT,
PACER achieves power-saving gains of 1.15x and 1.28x over
the native system implementation, respectively, without incurring
any performance degradation.

Index Terms—Storage servers, Power efficiency, SSD

I. INTRODUCTION

Escalating computational demands have precipitated a
marked rise in the energy consumption of data-centers, ele-
vating concerns regarding power efficiency [1]-[5]. As digital
services and applications proliferate, the imperative to opti-
mize data-center energy utilization intensifies.

The surge in artificial intelligence and data analytics appli-
cations necessitates substantial enhancements in data-center
storage capabilities [6], [7] and imposes rigorous performance
requirements on storage servers [8], [9]. These infrastructures
are concurrently pressured to scale both storage capacity and
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processing throughput [10], [11], as underscored by their
increasing usage [12]-[14].

Data-centers are increasingly adopting all-flash storage
servers [15]-[17], as the cost of flash-based storage media,
such as QLC NAND, continues to decline [18]. These servers
deliver superior performance relative to their HDD-based
counterparts [19], [20], addressing the escalating demand for
performance in emerging data-center workloads.

Storage servers account for approximately 25% to 30% of
the total power consumption within data-centers [21], [22].
Current research initiatives focus on enhancing the power
consumption of artificial intelligence and other accelerators
commonly deployed in data-centers [23]-[25]. However, there
is a notable gap in recent efforts to optimize the power
consumption of storage servers, particularly in light of the
emergence of cost-effective flash storage and advancements in
performant and power-efficient CPU architectures.

Current power-saving solutions are broad in scope and
do not address the unique requirements of storage servers.
These approaches do not consider the potential influence of
power-saving methods on a storage server’s 10 throughput and
latency, and they are unaware of the utilization and access pat-
terns specific to storage servers. Therefore, these methods are
constrained in their capacity to efficiently conserve power and
may compromise storage system performance. For instance,
the Linux on-demand power governor [26], while adjusting the
CPU core frequency based on CPU utilization, fails to consider
its impact on IO performance, and lacks other power-saving
methods such as power-gating.

To further the power-saving efforts in data-centers, prior
works investigate the feasibility of replacing x86-based
CPUs with energy-efficient ARM-based CPUs for compute
servers [27]-[30]. However, the comprehensive examination
of leveraging server-grade ARM CPUs in enterprise storage
servers to achieve the goal of mitigating power consumption
in storage systems, has not been extensively conducted. This
is particularly relevant given the substantial computational
demands that are undertaken by storage servers [31], [32].

In this work, we introduce PACER, a power-saving subsys-
tem designed for all-flash storage servers. While conventional



power-saving approaches typically account for application-
agnostic metrics such as CPU utilization [26], PACER is
guided by IO metrics specific to storage servers. It employs
advanced, continuous monitoring methods to assess the op-
erating condition of the storage server and anticipates the
potential 10 performance implications of applying power-
saving techniques like power gating, and dynamic voltage
and frequency scaling. It adheres to configurable performance
boundaries, facilitating the navigation of the trade-off between
performance and power-efficiency.

PACER systematically optimizes power conservation op-
portunities within data-center storage servers, specifically fo-
cusing on the most power-intensive hardware components.
This optimization is realized through an in-depth analysis
conducted in this study, examining storage server utilization
across numerous data-centers.

To further enhance power efficiency, PACER is designed
for efficient operation on server-class ARM-based CPUs.
It utilizes specialized task-scheduling methods to effectively
fulfill the performance criteria of data-center storage servers,
and compete with its x86 counterparts.

To realize PACER, we make the following contributions:

(1) Thorough analysis of data-center storage servers. We
thoroughly analyze the utilization patterns and power con-
sumption of storage servers deployed across 80 data-centers,
and identify key opportunities for power-saving. We also
assess the impact of conventional power-saving techniques,
such as power gating and dynamic voltage frequency scaling,
on the IO performance and overall power-consumption of
storage servers.

(2) Task manager for ARM-based storage servers. We
design a core resource manager and task scheduler optimized
for ARM architectures. The resource manager harnesses the
abundant cores integrated into server-grade ARM CPUs.

(3) Power-saving subsystem for storage servers. An 1O-
centric power-saving subsystem designed for all-flash storage
servers. Conventional power-saving approaches overlook their
impact on IO performance in storage servers, focusing solely
on general system metrics such as CPU utilization. PACER’s
feedback-driven subsystem continuously monitors 10 perfor-
mance, anticipates the impact of power-saving methods on
IO performance, and maintains a pre-defined Service Level
Agreement (SLA) based on configurable hyperparameters.

PACER is implemented on a commercially available
enterprise-grade storage server equipped with a server-grade
ARM CPU and an all-flash array of SSDs.

We evaluate PACER using synthetic and real-world traces
obtained from numerous data-centers, as well as MLPerf
Storage benchmarks [33]. Our results show that PACER
achieves significant power-savings while upholding its pre-
defined SLA. Under a pre-defined IO latency tolerance fac-
tor of 1.2x, PACER demonstrates a 1.23x improvement in
IOPS/WATT over a native system implementation in a real-
world trace, taking into account the overall power consumption
of the storage server. It incurs a 1.19x increase in average 10

latency, which is within the predefined 10 latency tolerance
threshold. In comparison, the Linux on-demand governor
achieves a modest 1.02x improvement in IOPS/WATT and
incurs an average IO latency increase of 1.26x over a native
system implementation. For MLPerf Storage benchmark [33],
PACER achieves significant power-savings, consuming 1.15x
and 1.28x less power than the native system implementation
for 3D-UNET and BERT, respectively. Importantly, these
power-saving achievements are attained without incurring per-
formance degradation in the benchmarks.

II. BACKGROUND

Storage servers. Storage servers allow for the separation of
storage and compute resources, which enhances data-center
scalability, flexibility and cost-efficiency [34]-[36]. To en-
sure high reliability and performance, storage servers execute
multiple operations in the critical path of 10 requests, while
lower priority operations are performed as background jobs.
For example, storage servers perform caching, compression,
indexing, and data integrity checks in the critical path, while
tasks such as file-system garbage-collection and telemetry are
done in the background. Fig. 1 depicts a typical high-level
architecture of storage servers. The IO data path consists of
five major layers.

The protocols layer handles requests of various protocols
such as Storage Area Network (SAN) or Network-Attached
Storage (NAS), and converts them into a unified request for-
mat. It also provides services such as user management, client
authentication, and Access Control List (ACL). The request is
forwarded to the data services layer, which is responsible for
managing the file systems in the storage server. The global
cache layer attempts to fulfill IO requests from the storage
system’s cache. The cache is typically composed of DRAM,
and leverages fast storage media like Storage Class Memory
(SCM) for persistence. The space manager layer abstracts
the discrete physical storage resources’ address spaces into
a contiguous logical address space to the upper layers. The
layer also translates the request’s logical address to its physical
location. The bottom layer is the storage pool layer, which
manages all the physical storage resources in the storage
server. This layer also implements RAID, erasure coding, data
reconstruction during failures, file-system garbage-collection,
and other physical media management functionalities.

Storage systems optimize for performance by implementing
several mechanisms such as caching and prefetching. Despite
such optimizations, attaining optimal performance for end-
users may be impeded by CPU bottlenecks in the system [31],
[36]; numerous storage server tasks across various layers
necessitate substantial computing resource [31]. In the absence
of sufficient computational capabilities, inefficiencies within
the system may manifest, thereby impacting the overall system
performance.

Power efficiency and performance of ARM and x86. ARM
and x86 CPUs operate on distinct Instruction Set Architectures
(ISAs). ARM CPUs employ the Reduced Instruction Set Com-
puting (RISC), while x86 CPUs employ Complex Instruction
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Fig. 1: High-level architecture of typical storage servers

Set Computing (CISC). RISC architectures feature a concise
set of simple instructions that can be executed in a single
clock cycle. This characteristic facilitates swift decoding and
execution [37]. In contrast, CISC architectures utilize complex
instructions capable of performing multiple operations. Con-
sequently, they require fewer instructions to execute complex
tasks, which can result in more memory-efficient code [38].
Traditionally, ARM processors excel in power efficiency and
compact designs, while x86 processors offer higher computing
power and wider software compatibility [39].

Prior works conducted extensive research on the power
efficiency of x86 and ARM CPUs, and the feasibility of
replacing x86 CPUs with ARM CPUs in data-centers [28],
[40]-[42]. Early generations of ARM CPUs suffer from low
performance, leading to extended task execution times and
consequently higher power consumption compared to their x86
counterparts [28].

Modern, server-class ARM CPUs demonstrate significant
improvements in performance and power efficiency compared
to prior ARM CPU generations [43], [44]. Further, modern
ARM CPUs offer superior power efficiency compared to
x86 CPUs, delivering higher performance per unit area and
watt [37]. While the single-core performance of ARM may
be comparatively weaker than that of x86 [45], this limitation
is typically mitigated by the architectural advantages of ARM
of accommodating a higher number of cores within a single
CPU die [27], [28], [46].

IIT. ANALYSIS OF ARM-BASED STORAGE SERVERS

Prior works analyze the power consumption of compute and
HDD-based storage servers [21], [47], [48], compute servers
with a single storage device [47], and investigate known
power-saving techniques [49]. Additionally, other works note
that different IO patterns lead to varying energy-efficiency in
ARM SoC based compute-servers [42].

This section presents a comprehensive analysis of all-
flash storage servers equipped with server-class ARM CPUs
deployed across several data-centers. We present an analysis
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Fig. 3: IOPS of a storage server over 24 hours

of the utilization patterns and power consumption in data-
center storage servers. Additionally, we evaluate the impact of
established power-saving techniques on IO performance and
power draw of ARM-based storage servers.

A. Utilization and power consumption analysis

We analyze the utilization and power consumption of on-
premise storage servers. Our analysis is based on data collected
from more than 80 data-centers and institutions with storage
servers that do not incorporate power-saving methods. These
data centers involve those which serve banks, hospitals, finan-
cial centers, etc. The detailed hardware specifications of the
analyzed systems are listed in §V.

1) Power consumption by component: We measure the
power consumption of each hardware component in the storage
server under a typical (low) load based on our analysis of
storage server utilization in on-premise data-centers (workload
is detailed in §I1I-A3). We also measure the power draw under
high 10 workload pressures. Fig. 2 shows the results.

We observe that without power-saving methods, the power
draw of most components do not vary by a significant amount.
The most power consuming components under the typical
(low) loads are the CPUs and SSDs.

Observation 1: CPUs and SSDs collectively account for 49-
60% of the total power consumption in storage servers, and
power-saving strategies should prioritize these components to
enhance system-wide power efficiency.

2) Utilization patterns of storage servers: The utilization of
on-premise storage server varies throughout the day [50]-[52].
Fig. 3 shows the IOPS profile of a representative on-premise



storage server from our sampled servers, captured over a 24-
hour period. As depicted in the figure, the IOPS remain at a
relatively low level throughout the day with occasional peaks.

Even in the absence of user-initiated IO requests, the system
is never kept idle for long periods of time due to continuous
background tasks which keep the system active. Based on
the profiled data, we observe that on-premise storage servers
perform numerous background tasks (§II), such as file-system
garbage-collection, which can run continuously. These low-
priority background tasks generate IO requests for the SSDs,
which lead to continuous system activity throughout the day.
Besides, several background tasks, such as flushing and com-
paction, can cause significant I/O and CPU bursts, leading to
severe latency spikes [32]. Hence, it is necessary to restrict the
resources allocated to background tasks, such as IO bandwidth
and CPUs, to ensure adequate front-end performance for an
optimal user experience [53].

It is worth noting that various dedicated roles for storage
servers, such as backup storage servers, are only directly
utilized for a fraction of the day to serve user 10 requests [54].
These servers remain idle a prolonged period of time, but
continuously perform necessary system background tasks.

Observation 2: In the absence of user-initiated 10 requests,
background tasks can continuously dispatch 10 requests, keep-
ing the system engaged.
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3) 10 workload distribution in storage servers: We show
the TIOPS, 10 size, and bandwidth distributions that a storage
server handles over a period of 24-hours based on the same
dataset as in §III-A2 in Fig. 4. These metrics, however,
cannot individually represent the overall system load due to
the complexity of storage servers and devices. Observing a
single metric in isolation, such as IOPS or bandwidth, cannot
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Fig. 5: cdf of IO pressure over time

represent the overall system load. These metrics are dependent
on other IO characteristics, such as IO size, which in turn
exert pressure on different components of the system, thereby
affecting overall performance.

Our goal in this analysis is to depict the overall system load,
or “pressure” the storage system is under, based on the real-
world traces as a function of time. This metric should represent
the overall system load relative to its maximum performance
across all of its resources.

To determine the overall system pressure based on real-
world traces, we create a representative micro-benchmark that
mimics the real-world traces in a controllable and configurable
manner. First, we quantize the trace into 20 minute segments,
and for each segment () we calculate: the average IOPS (I;),
read to write ratio (R;), access pattern — random to sequential
ratio (A;), and 1O size distribution (S;). We then configure
a micro-benchmark utility (see §V for more details) with
the same parameters per 20 minute segment, and run for all
segments twice: first we configure the IOPS to the average
measured IOPS (/;), then we run it without limiting the IOPS
in order to achieve the maximum performance with the same
IO characteristics. We calculate the system pressure as:

ST oI, Re, Aty Sh)
ZZ—':O U(max, Rt7 Ata St)

Where o is the micro-benchmark execution runtime.

Fig. 5 shows the cdf of the system pressure over time. The
measured system pressure is under 10% for 95% of the time,
depicting that it can potentially achieve 10x more IOPS with
the same IO characteristics.

pressure = 100 -

Observation 3: Storage servers spend the majority of the
time under low 10 pressure. Power-saving strategies must tar-
get this scenario to significantly lower the power consumption
of storage servers.

B. Impact of power-saving methods on IO performance

1) CPU power-saving: Modern processors incorporate a
Power Management Unit (PMU) that can adjust the power
consumption of cores [55]. The PMU can be leveraged to
enhance the cores’ power efficiency by regulating energy con-
sumption to accommodate the dynamic energy requirements
of varying workloads.

We evaluate the performance and power consumption im-
pact of two well-known power control modules provided by
the PMU: Dynamic Voltage and Frequency Scaling (DVES),
and Power Gating (PG) [56] (see §V for evaluation method-
ology). We run a synthetic IO workload benchmark using
vdbench with 8KiB IO size. We perform random reads
and writes at a ratio of 70:30, under 10% and 100% IO
pressures, corresponding to 60k and 600k IOPS for this micro-
benchmark, respectively. We measure the storage server’s av-
erage and tail (99p) latencies, sustained IOPS, and IOPS/Watt:

Dynamic Voltage and Frequency Scaling. DVFS controls the
power supply of all cores by adjusting the supplied voltage
and frequency. Discrete voltage and frequency values are
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coupled together, thus they cannot be controlled individually.
Higher frequency and voltage values usually result in higher
performance, however they lead to higher energy consumption.

Fig. 6 shows the impact of DVFS on performance and power
consumption by reporting the average and tail latencies, IOPS,
and IOPS/Watt normalized to their corresponding values under
100% of the maximum CPU frequency.

We observe that DVFS affect both the average and tail
latencies of the storage server under low and high IO pressures.
This impact is noticeable even with a slight reduction in the
CPU frequency, as the required operations the CPU needs to
perform to serve IO requests take longer to complete.

Under low IO pressure, there is an increase in IOPS/Watt,
signifying power savings. As the CPU is not fully utilized
and is not the storage system’s bottleneck, its frequency
can be reduced to conserve power without impacting the
IOPS. However, this reduction has implications for latency,
as elaborated earlier.

In scenarios of high IO pressure, there is a reduction in
IOPS/Watt. As the CPU operates at full capacity, a decrease
in frequency results in the CPU becoming the storage system’s
bottleneck. Specifically, when the system is configured to run
with a frequency of 30% of the maximum CPU frequency,
DVES leads to an average 10 latency increase of up to 2.5%, a
decline in sustained IOPS, and reduces the IOPS/Watt to 0.5 x
the TOPS/Watt under maximum frequency, thereby harming
power efficiency.

Power gating. PG controls the power consumption of the
processor by turning on and off individual CPU cores. When
PG turns off a core, the core’s voltage supply is cut off, thus
it does not consume any energy. Tasks running on cores that

are turned off are migrated to different active cores.

Fig. 7 shows the impact of PG on performance and power
consumption by reporting the average and tail latencies, IOPS,
and IOPS/Watt normalized to their respective values when all
cores are active.

At low IO pressure, the reduction in the number of ac-
tive cores does not immediately impact the average and tail
latencies, in contrast to DVFS, where decreasing the CPU
frequency leads to an immediate increase in IO latencies.
This is because not all cores are fully utilized under low 10
pressures. When the proportion of active cores falls below
63%, there is an increase in both average and tail latencies. The
increase in latencies stems from the coarse-grained approach
of deactivating entire cores for power-saving purposes. Turning
off cores reduces the system’s capacity to handle IO requests,
akin to the impact observed when increasing throughput in
a traditional 1O system’s throughput-latency experiment. The
impact of PG on IOPS/Watt is more profound than DVFS, due
to its ability to conserve more power by deactivating entire
cores. We note that under 63% active cores, the IOPS/Watt
increases by 1.18x with minimal IO latency impact.

Under 100% 10O pressure, the 10 tail latencies during the
deactivation of cores closely resemble those observed with
100% active cores. This is because the tail latencies under
heavy IO load increase in both scenarios. Additionally, the rise
in the number of deactivated cores correlates with a decrease in
sustained IOPS, resulting in a decrease in IOPS/Watt, similar
to the effects observed in DVFS. The low tail latency under
100% 10 load stands in contrast to the DVFS case, where
the scaling down of all core frequencies leads to a longer
completion time for each IO transaction, irrespective of the



SSD Load Power SSD . power Wake-up Full-systerp
relative to 0% latency power-saving

100% 133W  1.56x% Ous NA

50% 11.7W  1.38x Ous NA

10% 10.5W  1.24x Ous NA

0% 8.5W 1x Ous 0%

Idle-0 [1 us] 6.8W 0.8x lus 6.7%

Idle-1 [200us] 5.9W 0.69 % 200 us 10.3%

TABLE I: SSD power consumption under different IO pres-
sures and power states, and their impact on full-system power
consumption

10 load. This results in an immediate increase in both average
and tail latencies.

Observation 4: Power-saving methods can harm both system
performance and power efficiency if applied in unsuitable
scenarios, such as during high 10 pressures. PG exhibits
minimal performance impact when deactivating unused cores,
but is coarse-grained. In contrast, DVFS consistently affects
10 latency but allows for fine-grained adjustments.

2) SSD power saving: Modern SSDs incorporate power-
saving mechanisms, such as Autonomous Power State Transi-
tions (APST) [57]. APST enables SSDs to transition between
various power-saving states based on their operational work-
load. SSDs transition into a power-saving state following a
specified duration of inactivity and adopt distinct power-saving
states corresponding to varying durations of inactivity.

We quantify the power consumption of individual SSDs
under varying IO pressures and power states, assessing their
respective contributions to overall system power savings. De-
tailed results are presented in Table 1.

The Idle-0 and Idle-1 states are activated following idle
periods of lus and 200us, respectively. Idle-0 can yield a
total system power reduction of approximately 6.7% for the
storage server, while Idle-1 achieves a 10.3% reduction, both
accompanied by relatively low wake-up latencies.

Observation 5: SSDs enter power-saving states during idle
periods, with minimal end-to-end latency impact during tran-
sitions. To enhance power efficiency in storage servers, we
should maximize the SSDs’ idle time.

C. Discussion

Traditional power-saving methods can be directly applied
to ARM-based storage servers. However, the use of these
methods can negatively impact system performance beyond
a defined service-level agreement (SLA), which can vary be-
tween data-centers. Moreover, the efficacy of the power-saving
methods is restricted if they are not designed in conjunction
with the target application in a holistic manner, in this case a
storage server.

Operating systems can utilize the Advanced Configuration
and Power Interface (ACPI) to manage the power and per-
formance of CPUs. ACPI offers control over the CPU’s C-
states — responsible for managing idle states, and P-states —
overseeing core voltage and frequencies. In Linux, two power
management subsystems can be utilized to conserve system
power: cpufreq for P-states, and cpuidle for C-states.

cpufreq provides the on-demand governor [26] that can be
used to save CPU power. It accomplishes this by setting the
CPUs’ target frequency using the calculation:

.ftm*get = fmax : Tidle/,Ttotal

where fiorget is the target frequency, Tjq. is the time of
being idle, and T}, is the sampling period. The absence
of any storage-related metrics in its policy calculations (such
as IO latency) renders it as an unsuitable candidate for energy-
saving in storage servers, both in terms of adhering to a pre-
defined SLA, and its power-saving abilities. We demonstrate
its inefficacy for storage servers in §V.

The cpuidle mechanism activates various CPU idle states
during periods when the operating system does not have
scheduled tasks for the processor cores. However, the mech-
anism does not influence the operating system’s scheduling
algorithm to try to minimize the number of active cores in the
system. cpuidle lacks a mechanism to consider the trade-off
between performance and power in order to implement power-
saving strategies. Additionally, it does not implement PG. In
comparison to C-states, PG has demonstrated the potential to
achieve a more substantial reduction in power consumption,
nearing 50% as demonstrated in prior work [58].

Another example of the constraints of generic power-saving
methods in storage servers is the use of SSD’s APST. APST
achieves maximum power savings when there are complete
idle periods. As shown in §III-A2, storage servers generally
run background tasks throughout the day (§1II-A2), limiting
the power-saving potential of APST.

Based on the observations in this section, we conclude that
there are ample opportunities to apply power-saving meth-
ods to the most power-consuming components in on-premise
storage servers (observations 1-3). Furthermore, power-saving
methods need to be utilized in conjunction with the storage
server scenario to maintain predefined SLAs while maximizing
power-saving opportunities (observations 4-5).

IV. DESIGN AND IMPLEMENTATION
Our design goals for PACER are as follows:

Power-saving mechanism for storage servers. The power-
saving techniques in PACER should be designed in conjunc-
tion with the target application — storage servers. Such a design
that leverages the characteristics of storage servers and utilizes
1O-specific metrics for power-saving, can attain a high level of
power-saving while minimizing the impact on performance.

Adjustable SLA guarantee. Power-saving methods incur
system performance losses, some of which cannot be mit-
igated. Storage server deployments in different data-centers
may have different SLAs, performance, and power consid-
erations. To accommodate such scenarios, PACER should
expose the performance-to-power saving tradeoff to the system
administrator in an intuitive and useful manner. Storage system
administrators should be able to specify maximum tolerable
performance loss that is still within the SLA envelope based
on IO performance metrics.
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Fig. 8: Overview of PACER

ARM-friendly software design. ARM-based server-grade
CPUs exhibit superior performance-to-power ratios over their
x86 counterparts [38], hence PACER builds upon the ARM
architecture for higher power efficiency. However, a single
ARM core is usually computationally weaker than an x86
core [28]. The disparity in single-core performance is usually
counteracted by the number of cores a single ARM-based CPU
can contain [46]. PACER should be designed for this scenario.

A. Design overview

PACER’s main design components are shown in Fig. 8. We
explain each of the components and its role during PACER’s
operational state.

PACER applies power-saving methods during stable system
IO load states exclusively. Applying these methods during
unstable 10 load periods can lead to undesirable fluctua-
tions in IO performance. The Stability-Check and Burst-Check
components within the Workload Analyzer actively monitor
the system stability, utilizing the CPU-info and IO-perf info
components of the Unified Collector (@) to obtain CPU and
IO system metrics.

During stable 1O periods, the Parameter Update component
within the Model Layer establishes a performance baseline un-
der the current IO workload by gathering information from the
Infrastructure Layer (@). The Core Adaptor then calculates
the minimum number of cores necessary to sustain the current
IO performance (@), while adhering to a user-configured SLA
envelope. Then, the Freq. Adaptor (@) fine-tunes the power-
saving by adjusting the CPU core frequency.

The Task Migrator redistributes tasks from cores designated
for deactivation to other active cores (@). The CPU Resource
Manager, responsible for the efficient distribution and schedul-
ing of tasks across cores, deactivates the appropriate cores (@).

This process is performed iteratively with feedback obtained
from the Unified Collector.

The Idle-Check assesses the system’s idle status by monitor-
ing the incoming IO requests through 10-req info (@). Upon
recognizing the system as idle, it activates the Background

Receive 10 request

Burst/System
unstable

Idle @

System idle for
over 30s

Unstable

System stable;
recalculate the baseline

Parameter Update and
adjust resources

Fig. 9: PACER subsystem state machine

Task Scheduler to optimize the scheduling of background
tasks, aiming to achieve additional power savings during
inactive periods (@).

B. Storage server stability monitoring

PACER monitors the system and designates a state based
on IO and CPU metrics. Fig. 9 shows the different states and
state transitions. PACER starts in the Unstable state.

Unstable state. PACER does not apply power-saving methods
when it is in the Unstable state.

The Stability Check component can transition the sys-
tem into the Stable state. It relies on IO latency metrics
to determine whether the system is stable. Unlike metrics
such as IOPS, which may exhibit relative fluctuations during
low workload pressure, the latency does not fluctuate unless
the system bottleneck has been reached [31]. Furthermore,
latency is typically more crucial in low workload pressure
scenarios [31].

Stability Check monitors the 10 latency over a sliding time
window: it samples the average latency of IO requests within
each n second window (/;), and calculates the average latency
over k windows, and the divergence:
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If the divergence is less than a predefined threshold: l4;, <
lstable_thresh, the system is considered stable and transitions
to the Stable state.

Stable state. While in the Stable state, PACER applies power-
saving methods, detailed in §IV-C.

The Stability-Check component continuously monitors the
latency divergence of the system. If the divergence exceeds
the unstable threshold: l4i, < lunstabie thresh, the system
transitions to the Unstable state. Note that lsigpie_thresh <
lunstabie_thresh, 1S enforced to achieve hysteresis, so the
PACER does not frequently transition between the states.

The Burst-Check component monitors potential IO bursts
that may occur. These bursts may happen suddenly in a
short period of time; shorter than the duration of the moving
time window of the Stability-Check component. These bursts
require rapid response to prevent adverse effects on system
performance. The mechanism samples the CPU utilization and
IO latency in short 500ms windows. If the measured latency



divergence is larger than lpyrst_thresn OF the CPU utilization
surpasses 80%, a threshold determined empirically to indicate
system bursts, the component transitions the system to the
Unstable state, deactivating power-saving measures.

PACER can transition into the Idle state when the Idle-
Check component detects a period of at least 30 seconds with-
out any incoming user IO requests. We have chosen a period of
30 seconds based on empirical evidence demonstrating stable
behavior.

Idle state. During the Idle state, PACER initiates the Back-
ground Task Scheduler detailed in §IV-D.

The system transitions from Idle into the Unstable state
upon receiving an incoming IO request from clients. PACER
transitions to the Unstable state as it needs to assess the
new operational state of the system and adapt to the new 1O
workload before transitioning back to the Stable state.

C. Performance monitoring and power-saving methods

In the Stable state, the IO latency is continuously monitored,
averaged, and its divergence is calculated using a sliding
window as stated in §IV-B. As long as lgiy < lstabie threshs
the Parameter Update component in the Model Layer utilizes
the current average IO latency (l4,4) as the baseline latency
(lbasetine)- The baseline is used to estimate the current per-
formance loss resulting from the application of power-saving
methods. This operation happens iteratively when PACER is
in the Stable state and continuously tunes the power-saving
methods. The performance loss is computed based on the
latency measured in the current window, [, and the baseline
latency lbaseline:

lcur - lbaseline
l0SSoyy = —————

lbascline
The calculated relative distance between the current perfor-
mance loss (lossqy,) and the user-defined performance-loss
factor (plf) denotes the acceptable threshold for performance
compromise that the user is willing to tolerate for power-
saving opportunities.

plf — 10SScyr
plf

We employ (0SS gistance t0 implement a combination coarse-
grained (PG) and fine-grained (DVFS) power-saving methods.
These methods are applied iteratively as long as the system
remains in the Stable state. Note that [0SSg4;stance 1S tied to
IO performance degradation, which directly guides the CPU
power-saving mechanisms.

lossdistance =

Coarse-grained power saving. The Core Adaptor component
within the Model Layer calculates the number of cores the
storage system needs to employ while staying within the user-
defined performance-loss factor.

Reducing the available number of cores will initiate the
migration of system tasks from the affected cores to others,
leading to an overall increase in CPU utilization attributable to
the decreased number of active cores. Core Adaptor calculates

the desired overall CPU utilization; a higher desired utilization
value correlates to less overall active cores:

Udesired = Udesired,old + ﬂ : lossdistance

The parameters tUgesired and Ugesired,old represent the desired
new and old utilization, respectively. The configurable hyper-
parameter /3 governs the aggressiveness of the Core Adaptor.

We observe the following phenomenon while determining
the number of cores required to achieve the desired CPU
utilization: as cores are deactivated in the system, the total
utilization of the remaining cores following task migration
exhibits a climb with a small slope. That is,

n’ n
E U = o E Uq
=0 1=0

Where n and n/ are the number of cores before and after
adjustment, respectively, and u; is the utilization of core . «
is the measured slope.

Based on this observation, we calculate the number of
desired cores (Ngesireq) Using the current number of cores
(Newr), the current CPU utilization (), and the desired CPU
utilization (Ugesired):

Ndesired = |—04 *MNeur * ucur/udesi'red]

After configuring the system with the desired number of
cores, the total utilization of the active cores will converge
towards Ugesired-

Fine-grained power saving. After establishing the number
of cores in the system, the Freq. Adaptor refines the sys-
tem’s power consumption, aligning it with the user-defined
maximum performance loss factor (plf) by finely-tuning the
frequencies of the active cores.

PACER iteratively adjusts the core frequency based on the
IO-driven [0SSg;stance:

fdesircd == fcur + Y- lossdistance

Where ~ is a configurable hyperparameter that controls the
aggressiveness of the Freq. Adaptor.

We demonstrate the individual and combined effects of
coarse- and fine-grained power-saving mechanisms on the
performance and power consumption of the storage system
in Section V-A3.

D. Managing tasks

The Task Migrator migrates tasks from cores slated for
deactivation to other active cores. It prioritizes the completion
of ongoing tasks on the designated cores and reroutes new
tasks to alternative cores within the same core group.

The Background Task Scheduler prioritizes background
tasks when the system transitions into the Idle state. Specifi-
cally, it prioritizes ongoing background tasks, such as garbage-
collection, by executing them at maximum performance, ex-
pediting their completion. This enables the system to enter
an idle period with no ongoing or pending background tasks,
facilitating the SSDs to transition into their idle-states and
thereby optimizing overall system power-savings.



E. Managing CPU resources

PACER utilizes an event-based, run-to-completion model
for managing network and IO requests within the system.

Server-grade ARM CPUs feature a higher number of less
powerful cores compared to x86-based CPUs in order to
achieve equivalent overall performance [27], [28], [45], [46].
To manage the numerous cores in server-grade ARM-based
CPUs, the CPU Resource Manager organizes the available
cores into groups, each assigned a specific group of tasks.
This method bounds the number of cores contending for the
same locks and shared data structures, reduces false cache-line
sharing, which leads to higher performance [59]. The cores are
divided into the following groups:

Normal core group handles incoming 10 requests, carries out
the initial IO processing (data service layer in Fig. 1), and
performs data lookup in the cache (global cache layer).

KV or “Key-Value” cores are responsible for translating the
address of IO requests from logical to physical (space man-
agement layer).

RV or “Resource Volume” cores are dedicated to managing
physical disk resources and executing the IO operations on the
physical device (space management and storage pool layers).

The number of cores within each group is dynamically
adjusted utilizing the methods outlined in §IV-C. This adaptive
approach is necessary because workloads may unevenly utilize
distinct core groups; for instance, a workload with a high cache
hit rate may necessitate scaling up the “Normal” cores.

V. EVALUATION

Our evaluation demonstrates the power-saving capabilities
of PACER while maintaining high system performance. We
also demonstrate PACER’s ability to navigate the power-
performance tradeoff, and compare its power and performance
metrics against other system configurations under different IO
access patterns and end-to-end applications.

Methodology. we assess the performance and power employ-
ing following methodologies:

Performance. PACER leverages P-state assignment for fre-
quency adjustment of all active cores, and CPU hotplug [60]
for PG as utilized in prior works [61]. These mechanisms
directly affect the measured performance metrics, and we
evaluate our system performance utilizing these mechanisms.

Power. In our evaluation, we employ a server-grade ARM
CPU that does not support power gating. However, upcoming
iterations of the utilized CPU incorporate this technology.
The precision of the performance evaluation stems from the
direct impact of the mechanisms on system performance and
the operations required to deactivate cores and control the
frequency, supported by the current CPU generation.

In order to calculate the overall system power consumption,
we measure the entire system power consumption using a
power-meter and assess the per-component power consump-
tion using the on-board BMC component. To accurately emu-
late the power draw of the CPU under PG and DVFS, we

model the power draw using established power modelling
techniques which has been utilized in prior works [62]:

P:C'f'v2+PstatiC7

where V' is the voltage, Psqtic 1S the static core power
consumption, f is the frequency, and C' is the CPU-specific
power-coefficient.

First, we calculate the power-savings resulting from DVFS.
We measure the power consumption of the CPU using the
on-board Baseboard Management Controller (BMC) across
various frequency values that PACER can set for the CPU.
We find that at the measured frequencies, the voltage remains
constant. Therefore, through linear regression, we extract the
value of 6 = CV? and subsequently calculate the power-
savings attributed to DVFS:

Pcpu,freqsaving = 6fmaw + Pstatic - (6f + Pstatic)

= 5(fma:1: - f)

We then determine the total power consumption of the CPU
across different configurations of active cores. This involves
conducting power measurements using the on-board BMC,
which provides insights into the static and dynamic power
consumption of specific CPU components, such as the core
and other components. The overall CPU power consumption is
then measured for varying numbers of active cores, configured
through the BIOS settings. Notably, the dynamic components
of the CPU power consumption exhibit linear scaling with the
number of cores, aligning with established models found in
prior works [63]:

Pcpu = Pco’r‘e . (1 - n/nmaw) + Pcpu,rest

Where n and n,,., are the number of active and overall
cores, respectively. Peore and Pgpy rest are extracted using
linear regression. All employed linear regressions exhibit a
coefficient of determination exceeding 0.99.

The overall system power consumption is calculated:

P = (Pcpu - Pcpu,freqsaving) + Prest

Execution. Each evaluated workload runs for 5 minutes, and
we report the average and tail latencies, as well as IOPS/Watt,
normalized to native execution. For the vdbench workload,
three client machines are employed, each running 300 threads,
effectively saturating the storage server. The IO pressure for
both synthetic workloads and real-world traces is determined
and replicated using the methodology described in §III-A3.

Testbed. We use a commercially available off-the-shelf stor-
age server (Huawei OceanStor Dorado 6000) equipped with
2xARMvS8-based CPUs. Each CPU has 48 cores with a
maximum frequency of 2.6 GHz. The total per-CPU cache
sizes are: 64MiB LLC, 24MiB L2, 3MiB L1d and 3 MiB
L1i. Each socket has 32 GiB of DDR4 memory. The server
houses 24 SSDs in a RAID-6 configuration, and the server
runs a commercial storage system software stack. The 3 client
machines that drive the storage server for the evaluation are
connected via a 64 GiB/s FC link each.



Workload Description

Rand_R Uniform random 8 KiB reads
Rand_W Uniform random 8 KiB writes
Seq_R Sequential 128 KiB reads

Seq_W Sequential 128 KiB writes
Rand_RW Mix of 70:30 8 KiB reads and writes

TABLE II: vdbench IO access pattern configurations
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Fig. 10: Relative average and 99p IO latency over Native for
different p1f values under varying IO pressures. vdbench with
Rand_RW access pattern (lower is better)

Configurations. We evaluate the storage server’s performance
and power consumption under the following configurations:
(a) Native: No power-saving strategies. Serves as our ideal
upper bound on performance.

(b) Ondemand: Linux’s “on-demand” power-saving governor.
(c) PACER: With plf of 0.2 (unless stated otherwise).

A. Synthetic Benchmarks

We evaluate PACER and the other system configurations on
synthetic workloads using vdbench. The workload configura-
tions are listed in Table II.

1) Effect of plf on power and performance: We evaluate
the effects the hyperparameter plf that controls the perfor-
mance loss tolerance factor has on system performance and
power. We run vdbench using the Rand_RW configuration
with PACER under different IO workload pressures. We then
vary the value of plf, and measure the IO latency and power
consumption. We also evaluate the performance of Native
under different IO pressures, using it as our baseline and ideal
upper-limit on performance. We measure the results of PACER
relative to Native.
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Fig. 11: Relative IOPS/Watt over Native of the entire storage
server for different p1f values under varying IO load pressures.
vdbench with Rand_RW access pattern (higher is better)
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Fig. 12: Relative average and 99p 10 latency over Native for
different configurations and access patterns (lower is better)
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Fig. 13: Relative IOPS/Watt over Native of the entire storage

server for different configurations and access patterns (higher
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Fig. 10 and 11 show the impact of plf on IO latency and
IOPS/Watt of the entire storage server over Native, respec-
tively. We observe that the measured average latencies are less
than the configured plf for each pre-configured plf value.
As the IO load intensifies, the relative IOPS/Watt decreases,
showcasing PACER’s adaptive adjustment of power-saving
methods to the IO load, subsequently throttling them down.
The adaptation reduces the impact of power-saving methods on
performance, ensuring compliance with the configured perfor-
mance loss tolerance. We note that under the highest evaluated
IO load of 40%, the 99p latency of PACER relative to Native
decreases. This trend is attributed to the increase in 99p latency
of the Native system at this level, and PACER refraining
from aggressive power-saving measures. The sustained IOPS
is similar for all plf values and Native (not shown).

We assess the tradeoff between the actual performance
loss and the IOPS/Watt benefits across various plf values to
identify the most advantageous setting. Our empirical analysis
indicated that a plf value of 0.2 strikes a favorable balance
between performance and power considerations. Specifically, a
plf value of 0.2 exhibited a maximum latency increase of 15%
with 20% power saving for typical 10 pressures (§11I-A3).

2) Impact of 10 access patterns: Previous research [41],
[42] highlight the impact of different IO access patterns on
performance and power on compute servers. We evaluate this
impact on our storage server with PACER, under the different
IO patterns listed in Table II, and measure the average and tail
10 latencies, and IOPS/Watt.

Fig. 12 and 13 show the relative increase in IO latency
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Fig. 14: Relative average and 99p IO latency over Native for
different configurations and power-saving methods. vdbench
with Rand_RW access pattern (lower is better)
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Fig. 15: Relative IOPS/Watt over Native of the entire storage
server for different configurations and power-saving methods.
vdbench with Rand_RW access pattern (higher is better)

and IOPS/Watt of the entire storage server over Native, re-
spectively, for PACER and Ondemand. The sustained IOPS is
similar for all configurations (not shown). Notably, different IO
access patterns exert varying effects on the achieved power-
saving and IO latency increases of PACER. First, we note
that the average latency increase of PACER remains within
the predetermined plf for all access patterns. While PACER
and Ondemand exhibit comparable impacts on tail latencies,
PACER conserves more power, with a geometric mean in-
crease in IOPS/Watt of 1.18x across the access patterns,
surpassing Ondemand’s 1.02x increase.

3) Analysis of individual power-saving components: We
evaluate the individual impact of each power-saving compo-
nent in PACER on both power and performance by enabling
them one-by-one. We compare the methods to Native and
Ondemand.

Fig. 14 and 15 show the impact of the different methods
on IO latency, and IOPS/Watt of the entire storage server,
respectively. IOPS is similar for all methods (not shown).
Ondemand achieves a modest 1.02x increase in IOPS/Watt,
and exhibits a greater average and tail IO latencies when
compared to PACER. Ondemand has similar behavior to the
FreqAdaptor component, as they both rely solely on DVFS
for operation. Additionally, we observe that the CoreAdaptor
component (PG) has a more profound impact on power-
saving than FreqAdaptor (DVES), as corroborated in §III-B1.
While CoreAdaptor operates at a coarse-grained level, PACER
complements it with the fine-grained FreqAdaptor to achieve a
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Fig. 16: 99p latency over time during a burst in IO requests
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Fig. 17: Relative average and 99p IO latency over Native for
real-world trace (lower is better)

higher IOPS/Watt compared to each individual approach. This
combination results in lower IO latency than the maximum
observed when using either method in isolation.

4) Analysis of 10 bursts: 10 bursts can impose stress on
the system through a sudden influx of IO operations, and
the implementation of power-saving measures may potentially
impede performance and responsiveness during such bursts.

To assess PACER’s response to IO bursts and its Burst-
check component, we execute vdbench using the Rand_RW
IO access pattern. Initially, it is executed with 3% IO pressure
to allow PACER to stabilize and transition to the Steady state.
Following a 10-second waiting period, the IO size is then
increased to 32 KiB, and the IO pressure is raised to 100%.
The 99p tail latency for IO requests is then measured at one-
second intervals. Fig. 16 shows the results.

During the low 10 pressure period, PACER employs power-
saving measures, including PG and DVFS. The Workload
Analyzer components (Fig. 8) continuously monitor the system
state and incoming IO requests. Upon transitioning to a 100%
IO pressure rate, the fine-grained Burst-Check component
detects the surge in IO requests and promptly shifts the
system into the Unstable state. This entails activating all CPU
cores, and setting their frequencies to the maximum value.
The sustained IOPS for PACER throughout the experiment is
similar to that of Native (not shown)

Due to the prompt response of the Burst-Check component,
both PACER and Native exhibit comparable increases in 99p
latencies during the burst, reaching similar steady-state values.

B. Real-world benchmarks
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1) Real-world traces: We evaluate PACER using a real-
world trace collected from multiple data-centers, as detailed
in §III. We compare PACER to the Ondemand and Native
configurations. Fig. 17 depicts the effect on the average and
99p 10 latency relative to Native, and Fig. 18 illustrates the
impact on IOPS/Watt of the entire storage server relative to
Native. The IOPS is similar for all configurations (not shown).

PACER achieves power savings while conforming to its pre-
defined performance loss tolerance of 20%. It demonstrates
a 1.23x increase in IOPS/Watt of the entire storage server
over Native, and a 1.21x higher IOPS/Watt compared to
Ondemand. PACER experiences a 1.19x increase in average
IO latency over Native, adhering to the pre-configured plf
hyperparameter. Crucially, the rise in both average and tail
IO latencies for PACER is lower than Ondemand’s increase.
Ondemand exhibits 1.26x higher average 10 latency over Na-
tive, while only achieving a modest 1.02x higher IOPS/Watt,
underscoring its limited suitability for storage servers.

2) MLPerf Storage: We evaluate PACER using MLPerf
Storage benchmark suite [33] that characterizes the perfor-
mance of storage systems for machine learning workloads. The
benchmark suite consists of two separate workloads: image
segmentation with 3D-UNET, and natural language processing
with BERT. We run MLPerf Storage on a client machine
configured with 16 accelerators and measure the performance
and power consumption for each workload execution.

Both Ondemand and PACER are able to attain the same
performance levels as Native, as the benchmark’s performance
metrics are throughput oriented. However, the power-savings

of the configurations differ. As illustrated in Fig. 19, PACER
achieves an overall system power consumption reduction of
13% and 22% for 3D-UNET and BERT, respectively. In
contrast, Ondemand achieves more modest power savings of
only 2% and 2.5% of power savings for 3D-UNET and BERT
respectively.

VI. RELATED WORK

ARM and storage. Prior works demonstrate that ARM-based
architectures exhibit higher power efficiency than x86 [40],
[41], [64], with recent works exploring the use ARM-based
CPUs and their effect on IO performance [30], [44], [65].
Pavan et al. [42] asserts that due to the lower performance of
ARM cores compared to x86, the 10 throughput of storage
devices utilizing ARM is lower than those based on x86.
However, modern ARM CPUs that are natively designed for
cloud servers can provide comparable IO performance to x86
when the software stack is optimized [40], [43], [44]. Li et
al. [64] designed a heterogeneous system based on x86 and
ARM for storage devices. The ARM cores in the system are
integrated in NIC and complement the x86.

These works primarily focus on raw IO performance for
compute systems. Our work complements these studies by
examining and optimizing power management of ARM-based
storage servers.

Traditional power-saving methods. The optimization of
power efficiency in data-centers has been analyzed from
multiple perspectives. The efficiency of individual components
in data-center servers, including CPUs [55], [56], GPUs [23],
DRAM [66], [67], and SSDs [15], [68], has been thoroughly
studied to identify opportunities for improvement. Several
works analyze the characteristics of application workloads
and improve the energy efficiency using task scheduling tech-
niques [58], [61], [69].

Our work characterises and models the power and perfor-
mance of storage servers. PACER is a power-saving system
that achieves high power efficiency by leveraging power-
saving methods for storage servers.

Power saving in storage devices. Active flash [15] reduces
power consumption by minimizing data movements between
the SSD and CPU. It performs processing in storage by
offloading data analysis to SSD controllers. Alternative ap-
proaches involve redirecting 1O request to a limited subset of
storage devices, enabling the other devices to benefit extended
periods of inactivity, thereby conserving power [48], [70]-[73].
Satoshi et al. leverage DVFS to reduce the power consumption
of compute systems that employ Ultra-Low Latency (ULL)
SSDs [74]. Their major observation is that the CPU core
frequency can be reduced while the ULL SSDs are active.

These works focus on improving the power efficiency of
specific components or modules. PACER takes a systematic
approach to power management in storage systems and con-
siders numerous opportunities for power savings.

Power saving in databases. Prior works focus on energy mod-
elling of database systems, and predict and profile the power



consumption of database queries [75]-[78]. DVFES for database
systems has been explored in prior works for enhanced power
efficiency [79], [80]. Notably, these approaches are tailored for
frequency selections within cloud database clusters, leveraging
specific characteristics of queries and transactions. However,
their applicability in the storage server scenario is limited due
to their distinct operational requirements.

VII. CONCLUSIONS

PACER is a power-saving subsystem designed for ARM-
based, all-flash storage servers. PACER’s design is driven
by a thorough analysis of storage server utilization patterns
and power consumption across various data-centers. Unlike
conventional approaches, PACER is guided by storage server-
specific 10 metrics, employing advanced monitoring to as-
sess operational conditions and predict the potential impact
of power-saving techniques on IO performance. This allows
PACER to navigate the delicate balance between performance
and power-efficiency by adhering to configurable boundaries.
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