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Abstract—With the rise of data-intensive applications, the
rapidly growing memory demand poses a challenge in data cen-
ters. Tiered memory systems with emerging memory technologies
(e.g., NVM, CXL) is a promising solution. However, previous
tiering systems have some limitations. Some incur scan overhead
from their page tracking module. Others have kernel-intrusive
page migration modules that are difficult to evolve with kernel
versions. In this work, we present TieredMMS, a modular and
hardware-based memory tiering system. TieredMMS comprises
a userspace page access tracker and a page migration kernel
module. The userspace component communicates with the kernel
through shared ring buffers and ioctl system calls. Leveraging
eBPF, TieredMMS can be aware of the page life cycle. The
page access tracker measures page access count within each life
cycle via hardware sampling and classifies pages as hot, warm,
or cold. The page migration module (1) orders OS-maintained
LRU lists by classification results; and (2) performs periodic or
direct page migration based on available DRAM memory. Our
evaluation shows that TieredMMS performance is up to 4.97 x
that of AutoNUMA. Moreover, TieredMMS outperforms state-of-
the-art tiered memory systems by up to 26.3% in 3/6 test cases.

Index Terms—Data-intensive, Tiered Memory Systems, Page
Hotness, Address Sampling, Page Migration

I. INTRODUCTION

With the rapid development of data-intensive applications,
such as artificial intelligence, graph analytics, and big data,
computing systems are facing challenges in memory capacity,
memory bandwidth, and memory utilization.

Fortunately, the emergence of storage class memory (SCM)
and high-speed interconnect standards provides opportunities
to address these memory issues. One typical commodity
storage medium is Intel’s Optane DIMM, which is byte-
addressable and non-volatile [1]. For performance, it sits
between flash and DRAM in the storage layers. One obvious
drawback of DDR interface media is that it occupies limited
memory slots. Compute eXpress Link (CXL) [2], an open
standard released by a number of vendors in 2019, avoids this
limitation. It is based on the PCI Express (PCle) 5.0 physical
layer infrastructure and provides new features maintaining a
unified, coherent memory space between the host CPU and
memory on the attached CXL device. Thus, the host CPU
accesses the device-attached memory with load/store seman-
tics. According to existing theoretical analysis, its latency is
comparable to a remote NUMA node [3]. This assumption

applies to DRAM memory. However, CXL-attached memory
is not limited to DRAM but is diverse. DRAM, flash, or even
a mixture of both could be connected to a server through the
CXL interface and treated as memory.

Combining multiple memory types delivers better perfor-
mance, higher resource utilization, and cost trade-offs. These
benefits depend on an efficient tiered memory management
system. Linux memory management assumes all memory has
uniform capabilities based on DRAM. Previous researchers
have made numerous attempts and explorations in this area.
However, previous works on tiered memory systems have
some limitations. The key to an efficient data tiering policy
is identifying frequently and recently used data. Some studies
track page access by scanning page tables [4—6], but scalability
is limited as the working set size grows. Some works use
hardware sampling for page access tracking [7, 8], but their
page placement module is intrusive to the Linux kernel.
MaPHeA [7] is a profile-guided optimization technique for
heap allocations. It relies on offline profiling and is thus
unsuited to identifying dynamically changing memory access
patterns at runtime. TMO [9] only knows how much data
can be offloaded but cannot identify the best candidates.
Moreover, some approaches are tightly integrated with the
kernel [4, 10, 11]. Therefore, software deployment requires
recompiling the kernel. X-Mem [12] defines a set of cus-
tomized APIs and only applications adapted to these APIs
can benefit. Additionally, some research is confined to specific
application scenarios [13—18]. None of these works meet our
design objective: an efficient and modular tiered memory
management system.

In this paper, we propose TieredMMS, the first hardware-
based, efficient, and modular tiered memory management
system. TieredMMS tracks page allocation and release in
userspace via eBPF, initializing it on page allocation and
clearing it on page release. The access count is accumulated
during the page’s lifetime using hardware-based sampling.
The hot pages are determined by accommodating the most
frequently accessed pages into DRAM until it is nearly full.
The rest of the pages are treated as warm and cold pages.
Hot/cold pages are put into the hot/cold ring buffer shared by
the userspace and kernel space. Warm pages serve as a buffer
between hot and cold pages to avoid frequent page migration
back and forth. TieredMMS augments the OS-maintained LRU



lists by moving hot pages to the active list and cold pages
to the inactive list. To execute page migration operation,
TieredMMS starts a demotion thread on each DRAM node
and a promotion thread on each non-DRAM node. On the
DRAM node, TieredMMS defines 2 watermarks, high_wm
and low_wm. These two watermarks indicate the free memory
size on the current node. When the free memory is below
the high_wm, TieredMMS isolates pages from the inactive list
and tries to move them to the non-DRAM node until the free
memory reaches high_wm again. If the free memory continues
to decrease until it is below low_wm, the migration thread is
woken up immediately and tries to perform the page migration.
On the non-DRAM node, as long as the anonymous active list
is not empty, TieredMMS tries to migrate pages to the DRAM
node.

We choose two representative memory-intensive workloads,
Liblinear [19] and Graph500 [20]. TieredMMS moves fre-
quently accessed pages to the DRAM node and improves the
default Linux’s AutoNUMA performance by up to 3.97x.
We compare TieredMMS with Memtis, a state-of-the-art
tiered memory management system. Our evaluation shows that
TieredMMS outperforms Memtis by 8%-26.3% in 3/6 test
cases.

We summarize the contributions of this paper as follows:
(1) We present TieredMMS, which is implemented by a user
program and a kernel module. Therefore, it is easy to maintain
and deploy. We plan to open source TieredMMS. (2) We
propose a page access counting method based on the page life
cycle and a page migration mechanism based on watermarks.
(3) We combine the advantages of hardware-based sampling
and OS-maintained LRU. LRU is built based on the recency
principle, and PEBS reflects the page access frequency.

II. BACKGROUND AND MOTIVATION
A. Tiered Memory System

With the development of new storage media and memory
semantic interconnection bus. There are usually multiple types
of memory in the computing system. The typical storage media
is persistent memory and CXL-attached memory.

DRAM+PMem memory systems. For persistent memory,
Intel Optane DC PMem is the first and only commodity
product. It increases the memory capacity at the cost of
~5x lower bandwidth and ~2-3x latency compared with
DRAM [21, 22]. Besides the read and write performance is
not asymmetric [23]. Although Intel has dropped most of its
storage business, it does not affect our research. The future
Intel CPU will integrate HBM which is a new memory tier.

CXL-based memory systems. CXL is a promising industry
interconnection protocol [2]. With the cache-coherent and
memory semantic, CXL enables memory expansion, memory
pooling, and even memory sharing. Although there are many
issues before wide deployment, CXL-based tiered memory has
great potential in dealing with memory stranding [3], memory
capacity, and memory bandwidth.

Due to the performance gap between different types of
memory media, the tiered memory management aims at

scheduling data among different memory layers to achieve
better performance. A classic approach achieves this goal by
tracking memory access patterns, classifying hot/cold pages,
and automatically migrating pages between fast memory and
slow memory. Therefore, an efficient data placement policy is
critically important.

B. Processor Event-Based Sampling

PEBS is a hardware mechanism of PMU on Intel processors.
It was supported on the Nehalem processor and extended in the
subsequent processor. PEBS is capable of recording EFLAG
register, instruction pointer (IP), general registers, and so on.
From Haswell, PEBS can also record the data linear address
for both memory load and store. With data linear address,
memory access profiling is available.

The PEBS relies on specified hardware counters and the
Debug Store (DS) mechanism [24]. DS maintains a software-
defined area of memory that is used to save PEBS records. The
base address of this memory area is stored in [A32_DS_AREA
MSR. There are 3 parts in DS save area: buffer management
area, branch trace store (BTS) buffer, and PEBS buffer. The
buffer management area contains the metadata of PEBS buffer
and BTS buffer. One important field in the buffer management
area is the PEBS index, which remembers where the next
PEBS record will be written.

The PEBS hardware counters are driven by hardware events
that we are interested in, such as retired load/store micro-
operations (4OPs). On overflow of a PEBS-enabled counter,
the PEBS facility is armed. At the occurrence of the next
PEBS event, the PEBS hardware will take an assist, and a
PEBS record is written in the OS-defined PEBS buffer.

When the PEBS buffer is nearly full, a Performance Moni-
toring Interrupt (PMI) generates, and the control flow transfers
to the kernel PMI handler. PMI handler reads the PEBS buffer
and stores the required data into a ring buffer. The ring buffer is
defined by users and shared between the user and kernel space.
data_head points to the head of the ring buffer. data_tail
indicates the data to be read by the user. The user process
setup PEBS by the perf_event_open system call. When reading
data from the ring buffer, the user needs to maintain a copy of
data_head and data_tail. data_head is written by the kernel
and read by the user. When the user copies it, an acquiring
load is required to ensure the user sees data_head first instead
of the ring buffer data. data_tail is written by the user and
read by the kernel. When the user updates it, a releasing store
is required to ensure the user has seen the data from the ring
buffer.

C. eBPF

BPF (Berkeley Packet Filter) is an interface that allows
users to offload a simple function to be executed by the
kernel. Linux’s framework for BPF is called eBPF (ex-
tended BPF) [25, 26]. Functions are verified by the kernel
at install-time to ensure they are safe; for example, they
are checked to make sure they do not contain too many
instructions, unbounded loops, or accesses to out-of-bounds



memory addresses [27]. After verification, the eBPF functions
can be called normally. The desired data can be transferred to
userspace through the map, ring buffer, or perf buffer.

III. DESIGN OF TIEREDMMS
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Fig. 1: Architecture of TieredMMS.

The overview architecture of TieredMMS is shown in
Figure 1. TieredMMS consists of two parts: the page access
tracker and the page migration module. The page access
tracker runs in userspace. It is responsible for (1) handling
PEBS samples and updating the page access metadata; (2)
hooking the memory allocation path via eBPF and notifying
the page migration module if the DRAM node is under
extreme pressure; (3) performing page classification and filling
the page into the hot/cold ring buffer. The page migration
module runs in the kernel and its ring buffer handler moves
pages between the LRU lists according to the hot/cold ring
buffer and performs periodic page migration.

A. Page Access Tracker

As shown in Figure 1, the page access tracker includes
the page access sampler and the page analyzer. The two
components communicate through the page access metadata.
The page access sampler parses the PEBS sample records and
stores them in the page access metadata. The page analyzer
conducts (1) threshold calculation; (2) metadata cooling; and
(3) page classification.

1) Page Access Sampler: Production workloads often run
with multiple threads and may spawn child threads during the
execution. All threads read and write memory and are likely
to migrate across different cores. Therefore, the page access
sampler should (1) count memory access for the specified task
and its child tasks on all CPU cores; and (2) record both reads
and writes. Figure 2 shows the page access tracker design. It
samples memory access using PEBS and the perf_event_open
system call as described in Section II. To achieve the first goal,
we open one file descriptor per CPU core and set the inherit
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Fig. 2: Page access sampler design based on PEBS.

parameter. Thus, the counter could count both the specified
task and its children regardless of which core they run on.
Since each file descriptor binds to one event, we open multiple
file descriptors on each CPU core to achieve the second goal.
We also create an epoll instance and add all file descriptors
to epoll interest list. We poll the epoll file descriptor in an
infinite loop until the specified task terminates. Upon wakeup,
we can read records from the ring buffer.

The three hardware events that we are inter-
ested in are mem_load_[3_miss_retired.local_dram
(0x01D3), mem_load_retired.local_pmm(0x80D1), and

mem_inst_retired.all_stores (0x82D0). When considering
memory load, mem_inst_retired.all_loads (0x81D0) is not
suitable because it does not provide information regarding
real memory access to the main memory. Hardware sampling
mechanisms have the capability to sample both virtual and
physical addresses. We record both types of them. First, the
physical address will change after page migration. This brings
troubles for the maintenance of page access count. Therefore,
we record virtual addresses, which remain unchanged during
page migration. Second, to avoid translation from virtual
addresses into physical addresses, we also record physical
addresses. However, the hardware sampling mechanism is
not aware of the life cycle of pages. To avoid new pages
not being affected by previous counts, we hook two kernel
functions (do_anonymous_page and free_pages) with eBPF
to track page allocation and deallocation. We give each new
page an initial value and reset the value when the page is
free.

It is generally accepted that there is a trade-off between
overhead and accuracy. To obtain an optimal balance point
we made the following efforts. (1) Reduce the wake-up times.
The mmap ring buffer space is limited. To capture samples
timely, we set the threshold for overflow notification as 1.
This means the memory access tracker will be woken up as
long as there is a sample. When receiving the notification, the
page access tracker reads all the data until the ring buffer is
empty; (2) Since the kernel memory management and data
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migration granularity is page, we do not care about every
single load/store operation. Instead, we merge the adjacent
accesses that fall on the same page. This can be achieved by
masking the 12 least significant bits of each sampled address.
(3) Sample rate. Sampling every memory operation is not prac-
tical. If we set the sampling frequency to a higher value, the
kernel will automatically reduce the sampling frequency and
perf will be throttled. Since there are more store instruction
events than Last Level Cache (LLC) load miss events, we
set different intervals for the events. In our experiments, the
sample intervals for LLC load miss and all store events are
199 and 100,007 respectively. In our experiments, we find that
the upper limit of CPU usage is 4.25% of a single core.

2) Page Analyzer: The first thing we need to clarify is
the page access metadata, including the hotness distribution
array and hotness hash table. The hotness hash table is used
to store the hotness value of each page. In this work, we choose
the page base address as the key. The page’s hotness value,
represented by the page access count in a period, is stored
in the hash bucket. The hotness distribution array represents
the global page access count distribution. The pseudo hotness
distribution is shown in Figure 3. The x-axis is the page access
count and is divided into 16 intervals that are represented with
16 bars. A page with hotness in range [27,27"!) falls into the
n-th interval. The bar height is the number of distinct pages.
The hotness distribution figure is represented by an array with
16 elements.

Hotness distribution provides an important basis for thresh-
old calculation. As shown in Figure 3, pages are divided into
three groups: hot, warm, and cold. The warm group merits
particular attention. Some cold pages exhibit hotness close to
the hot threshold, while some hot pages have hotness near the
cold threshold. Pages in these categories are prone to frequent
migration between hot and cold sets. The warm interval serves
as a buffer to mitigate this. The threshold calculation algorithm
appears in Algotithm 1 and « is 75%. The key idea of
determining the three thresholds is to maximize pages fitting

Algorithm 1: Threshold Calculation
Input: The number of free pages in DRAM node (F%),

The number of pages that fall in histogram bar
b (Sp), maximum of bar index of the histogram
mazx

1 Initialization: sum=0;

2 for b = max;b >=0;b— — do

3 if sum + S, > F then

4 ‘ break;

5 end

6

7

8

9

sum+ = Sp;

end

Thot =b + 1,

if sum < Fs x a then
10 ‘ Twarm = Thot — 1;
11 else
12 ‘ Twarm = Thot;
13 end
14 Tcold = Twarm - 1;

within the DRAM node. We accumulate bars from right to
left until exceeding the DRAM node capacity. The current bar
index (T},:) represents the hot threshold. One bar is reserved
as a buffer between hot and cold pages, termed warm pages.
Thus, the warm threshold (7,4..) and cold threshold (7 .,;4)
are Thoy — 1 and Toyerm — 1 respectively.

The complete workflow of the page access tracker is shown
in Algorithm 2. First, we allocate memory for the hash table
and the hotness distribution array. Second, the main thread
sleeps until data is available in the monitored ring buffers.
Third, we read one entry from the ring buffer and update the
hotness hash table. We update the hotness distribution array
when the sampled address moves from one bar to another.
Fourth, perform page classification. Pages on the right of
Twarm g0 to the hot ring buffer. Pages on the left of 7,41, g0
to the cold ring buffer. Fifth, we apply the recency effect by
halving the page access count in the hash table and refilling
the hotness distribution array. If a page becomes cold after
cooling, it goes to the cold ring buffer.

B. Page Migration

Page migration is responsible for promoting hot pages to
the DRAM node and demoting cold pages to the non-DRAM
node. It is implemented as a kernel module. For simplicity, we
reuse the OS-maintained LRU lists. Since Linux kernel v5.0,
non-DRAM memory can be exposed as a CPU-less NUMA
node. Each NUMA node has an LRU list vector containing
active and inactive lists. However, the main purpose of the
OS-maintained LRU lists is to provide a relative classification
of pages for reclamation. The LRU lists are built based on the
recency principle but the page access frequency is omitted.
We consider the frequency factor by actively moving pages
between active and inactive lists based on their hotness, as
measured by the page access tracker. The workflow is shown



Algorithm 2: Workflow of Page Access Tracker

1 Initialization: Hash table and hotness distribution array;
2 while /ring_buffer_empty() do

3 Get one sample entry;

4 if valid address then

5 nr_sampled++;

6 Update the hotness distribution array;

7 Update the hotness hash table;

8 Perform page classification;

9 if nr_sampled % threshold_period == 0 then

10 | Calculate the threshold;

11 else if nr_sampled % cool_period == 0 then
12 Halving the hash table;

13 Refilling the histogram;

14 end

15 end

16 end

Algorithm 3: Ring Buffer Handler
1 while /shouldExit do

2 sleep(100us);

3 nr_entries = data_head - data_tail;

4 while nr_entries do

5 Get the page address from ring buffer;

6 if hot page then

7 ‘ Move it to the head of the active list;
8 else

9 ‘ Move it to the head of the inactive list;
10 end

11 nr_entries——;

12 end
13 end

in Algorithm 3. If the current page is hot, the ring buffer
handler moves it to the head of the active list. Otherwise, the
page is moved to the inactive list. In this way, the LRU is
ordered by page hotness.

To perform the actual page migration operation, we learn
from swap. First, we start a thread on each memory node.
On the DRAM node, there is a demotion thread. On the non-
DRAM node, there is a promotion thread. Second, for the
DRAM node, we define two memory watermarks, high_wm
and low_wm, which are shown in Figure 4. We set high_wm
and low_wm to 3% and 2% of the DRAM node capacity,
respectively. The page migration thread periodically (500ms)
checks the watermarks. When the free memory size is lower
than the high_wm watermark, the demotion thread will migrate
pages to the non-DRAM node, which is called periodic
demotion. Third, we hook the page allocation path and check
free memory size. If the free memory size is lower than the
low_wm watermark, the page access tracker will wake up
the demotion thread immediately by the system call, which
is called direct demotion. The promotion condition is that

Free Memory

high_wm|

low_wm|

Fig. 4: Demotion watermarks. @ Periodic demotion starts; @
Direct demotion starts; @ Direct demotion stops; @ Periodic
demotion stops.

the anonymous active list is not empty. Data Warehouse uses
anonymous pages for computation. The file pages are used for
writing intermediate computation data to the storage device.
Previous research has demonstrated that almost all hot pages
are anonymous whereas almost all file pages remain cold [10].
Therefore, the demotion fallback path is inactive file LRU,
active file LRU, and inactive anonymous LRU. Pages on active
anonymous LRU are not candidates for demotion. Each time
the page access tracker cools down its metadata, it will notify
the demotion thread. The demotion thread will move 50% of
the pages at the tail of the active anonymous LRU to the
inactive LRU.

IV. IMPLEMENTATION

TieredMMS is implemented by a user program and a kernel
module. The total lines of code (LOC) is 5696, including 4077
lines of user code and 1619 lines of kernel module code.

The metadata size of TieredMMS depends on the memory
size we are interested in. Each hash bucket has a 4-byte
counter and a 8-byte physical address and the total size
is 12 bytes. Take 1TiB of memory as an example, 256M
(1TiB/4KiB) buckets are required. The metadata requires a
total of 3072MiB. In the worst case, the memory overhead
is 0.293%. Considering the memory footprint, static memory
allocation is not a good choice. Instead, we use the map
container in the C++ Standard Template Library (STL) to
record the page access count. It is implemented as a Red-
Black tree and memory is dynamically allocated/deallocated
by the C++ runtime.

The page migration worker is implemented as a kernel
module to minimize kernel intrusions. There are two main
challenges in the implementation of the migration module.
First, the Linux LRU lists and many kernel APIs are not
exposed to the kernel module by default. We obtain the global



TABLE I: Benchmarks

Benchmark | RSS Description
Graph500 67GB | Generate a graph and perform BFS search for
64 keys
Liblinear 45GB | We run the multi-core Liblinear benchmark with
KDD12 [28] dataset

variables and critical kernel APIs by kprobe mechanism. Sec-
ond, the kernel module is not in the kernel’s memory allocation
path, so it cannot be aware of the upcoming memory pressure
in time. We hooked the kernel’s alloc_pages_vma function by
eBPF and obtained the memory size to be allocated from its
entry parameter. Third, the communication between the page
access tracker and the page migration worker. The userspace
page access tracker needs to inform the page migration module
of sampled hot pages. We use ring buffers to send the hot/cold
pages to the kernel module. Besides, when the free memory
falls below the low_wm, the page access tracker immediately
wakes up the page migration thread by a system call.

V. EVALUATION

Our evaluation answers the following questions:

o How effective is TieredMMS in identifying hot pages of
memory-intensive applications?

o How does TieredMMS perform against the state-of-the-
art memory tiering system?

o What is the performance gap between TieredMMS and
the DRAM-only system?

A. Experimental Setup

The experiments were conducted on a physical server with
two 20 cores/40 threads Xeon Gold 6230N @ 2.30GHz
processors. The testbed has 2 NUMA nodes, each with 128GB
DRAM and 256GB Optane memory. The baseline and Tiered-
MMS run on CentOS Stream 9 with Linux kernel 5.15.0. For
Memtis, the kernel version is v5.15.19.

We choose two representative memory-intensive applica-
tions, graph processing (Graph500) and machine learning
(Liblinear). Table I shows the brief description and its Resident
Set Size (RSS).

For a tiering memory system, the ratio of the fast memory
to slow memory size is an important factor affecting the
performance. We explore 3 configurations (1:1, 1:3, 1:7). In
the 1:3 configuration, the fast memory size is 25% of the
application’s resident set size. We modify the ratio by adjusting
the kernel boot argument (memmap GRUB option [29, 30])
to set a restriction on the size of DRAM. We turn off
the transparent huge page and use a single socket for our
evaluations to avoid NUMA effects, which are out of the scope
of this paper.

B. Effectiveness of Page Classification

Under the 1:1 configuration, we collect the amount of
hot, warm, and cold pages reported by TieredMMS. The
results are shown in Figure 5. The dashed line indicates the
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Fig. 5: Amount of hot, cold, and warm pages with page
migration.

available memory on the DRAM node. For both Liblinear
and Graph500, we can see that the number of hot pages is
close to the DRAM size, which is consistent with the design.
The difference is that Graph500’s hot pages grow very slowly.
Because Graph500’s hot page ratio is lower than Liblinear’s.
This is why Graph500’s performance improves by 4-5x
compared with AutoNUMA, while Liblinear only improves by
2-3x (Section V-C). The warm set, a buffer between hot and
cold sets, will see temporary large fluctuations because many
hot pages become warm pages before adjusting the thresholds.

Compared with anonymous pages, file pages are accessed
much less frequently. Liblinear consumes about 45GB of
anonymous pages and about 21GB of file pages. Given their
low access frequency, few file pages are collected. This aligns
with Figure 5a. Graph500 consumes 67GB of memory, all of



which are anonymous pages. Figure 5b shows that the total
size of sampled pages is larger than 67GB due to page freeing
and reallocation.

C. Performance Comparison

We compared TieredMMS with AutoNUMA and
Memtis [31], a state-of-the-art heterogeneous memory
system. AutoNUMA served as the baseline and all results
were normalized to it. We ran each test three times and
averaged the results. To better understand the performance
results, we collected DRAM hit rates in some test cases.

1) Machine Learning: We ran Liblinear [19, 32, 33] on
KDD?2012 dataset. During the warm-up phase, Liblinear loads
the KDD2012 dataset into memory, which performs lots of file
I/0O, and generates file caches. The Liblinear consumes ~67GB
of memory, of which ~21GB is the page cache. Since Linux
uses a local allocation policy, the page cache consumes a good
proportion of local DRAM capacity. When the free memory
of the DRAM node is lower than the high_wm, TieredMMS
migrates the file pages to the non-DRAM node. This ensures
that anonymous pages are allocated in DRAM nodes. Previous
research has shown that anonymous pages are more critical to
application performance than file pages. This is one reason for
performance improvement. Another reason is that TieredMMS
identifies the hottest anonymous pages and places them on the
DRAM node. Figure 6 shows that TieredMMS is 2.08-2.74 x
the performance of AutoNUMA.

Compared with Memtis, TieredMMS shows 6.8% worse
performance in the 1:1 configuration. In this case, the DRAM
capacity is 31GB (OS consumes a part of memory). Half of the
anonymous pages fit in the DRAM node. TieredMMS ensures
that hot pages remain at the head of the LRU list by frequently
adjusting page positions within the LRU. This process involves
locking the page by the kernel. For the DRAM node, this
mechanism does not offer significant assistance. In the 1:3
and 1:7 configurations, most anonymous pages fit into the
non-DRAM, and TieredMMS achieves 10.6% and 26.3%
performance improvements, respectively, as shown in Figure 6.
For the non-DRAM node, keeping the hottest page at the
head of LRU lists helps promotion candidates selection. At the
same time, TieredMMS has a more efficient demotion policy.
TieredMMS keeps the hottest pages at the head of LRU lists
and directly selects the rear 70% of the LRU list for demotion
candidates. Since the sampled pages predominantly consist of
hot pages, fewer pages are filled into Memtis’s demotion list.
The majority of elements in the demotion list are derived from
traversing the LRU lists and querying the metadata, which
involves expensive reverse mapping.

2) Graph Processing: Graph500 [20] generates a graph and
conducts a BFS search for 64 randomly selected keys. During
the runtime of Graph500, the majority of pages stay in the
inactive anonymous list. Unlike Liblinear, Graph500 does not
have file pages but a large number of anonymous pages. On the
DRAM node, TieredMMS moves hot pages from the inactive
list to the active list. TieredMMS periodically isolates pages
from the anonymous inactive list and migrates them to the
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non-DRAM node. In the cooling stage, cold pages are moved
from the active list back to the inactive list. On the non-DRAM
node, TieredMMS isolates pages from the anonymous active
list and migrates them to the DRAM node. Figure 7 shows
the performance for Graph500. Compared with AutoNUMA,
TieredMMS improves performance by 3.97x, 3.49x, and
3.00x in 1:1, 1:3, and 1:7 configurations, respectively.
Figure 7 shows that TieredMMS outperforms Memtis by 8%
in the 1:1 configuration, while in 1:3 and 1:7 configurations,
TieredMMS exhibits 5.8% and 3.6% performance deficits, re-
spectively. The primary factor contributing to the performance
difference stems from the watermarks and the demotion policy.
In the 1:1 configuration, the DRAM capacity is about 42GB
(the OS consumes a part of the memory). The high_wm and
low_wm are about 1272MB (3% of DRAM capacity) and
848MB (2% of the DRAM capacity), respectively. Graph
generation quickly consumes a large amount of memory.
With a 1272MB high_wm, TieredMMS starts migrating pages
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to the non-DRAM node at an earlier stage, making space
for subsequent anonymous page allocation. Another reason
is that TieredMMS employs a page migration strategy that
enables faster responsiveness compared with Memtis. Since
TieredMMS maintains the most frequently accessed pages at
the head of the LRU list, it directly selects the rear 70% of
the list for migration to the non-DRAM node during demotion.
For Memtis, this process is relatively time-consuming, which
is explained when analyzing Liblinear’s performance. In the
1:3 and 1:7 configurations, the DRAM capacity is about 25GB
and 17GB, respectively. The high_wm is about 760MB and
543MB, respectively, and TieredMMS does not have much
time to free up space for quickly generated data in the graph
generation phase. Consequently, the newly generated data
falls into the non-DRAM node. To validate our analysis, we
compared the impact of different watermarks on DRAM hit
rates. Figure 8 shows that increasing the watermarks results in
higher DRAM hit rates during graph generation. When raising
watermarks, the performance for the 1:3 and 1:7 configurations
increased by 8% and 14%, respectively.

D. Comparison with DRAM-only system

The ultimate performance of a tiered memory system is
equivalent to that of a DRAM-only system. This section shows
the gap between TieredMMS and capped performance. Since
we currently do not have actual CXL-based memory devices,
our experiments are based on Intel’s Optane DIMM. It can
be seen from Figure 9 that there is nearly half or more
performance loss when using Intel’s Optane DIMM. Previous
research has shown that there is a big performance gap
between Intel’s Optane DIMM and DRAM. The bandwidth
gap between DRAM and Optane DIMM is approximately 3-
5x and the read latency gap is about 3x [21]. The access
latency of CXL-memory is similar to the remote NUMA
node [3, 10]. We therefore infer that this gap will continue
to narrow as CXL memory devices become more popular.
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Fig. 9: Comparison with DRAM-only (1:0) system.

VI. RELATED WORK

The stock Linux memory management reuses the NUMA
infrastructure to cope with multi-tiered memory systems. The
NUMA management has some limitations. First, pages are
never moved to a CPU-less node and promotion is discarded
when the DRAM node is under pressure. Second, Linux
divides memory into local and remote without considering the
performance differences among heterogeneous memory media.
When the local DRAM is exhausted, the fallback path is the
local non-DRAM node, even though the remote DRAM node
performs better [34]. When local DRAM is under pressure, the
kswapd becomes busy, consuming significant CPU resources.
Even when the swap partition is disabled, the kswapd is
occupied with writing file-backed memory to the disk. For
LRU lists, the oldest pages in the inactive lists are cold but
the youngest pages in the active lists are just the most recently
used but may not be the most frequently used.

To remedy the shortcomings, previous works have explored
various techniques to unlock the potential of the tiered memory
system. According to the page access tracking method, these
works are classified into several categories: software-based
scanning, hardware-based sampling, and a combination of
both. Of course, there is also a kind of hardware tiered memory
system, such as memory mode Intel Optane DC [1], which is
outside the scope of our research.

TPP [10], AutoTiering [11], Nimble [5], Thermostat [35]
are software-based solutions, which augment current OS page
tracking and page migration mechanism. To solve the prob-
lems of existing memory mechanisms, AutoTiering performs
page promotion with page eviction if the target node is fully
occupied or finds the next best memory node when the DRAM
node is fully occupied. TPP defines a new watermark that is
higher than WMARK_HIGH and has kswapd reclaiming pages
until free pages reach such watermark. With this watermark,
TPP could reserve some memory space for promotion. Nimble
introduces efficient two-sided migration, multiple migration



threads, and larger data sizes. Thermostat precisely detects the
access frequency of huge pages using page faults, which incur
significant tracking overhead. All these solutions are intrusive
to the Linux kernel. Moreover, page table scanning incurs
performance degradation with large memory sizes. To balance
the performance, it requires a long time scan period, which
affects accuracy.

Leveraging the processor’s hardware event-based sampling
to track memory access on tiered memory systems is another
approach used by recent works [8, 31, 36, 37]. HeMem [37]
and Memtis [31] use hardware-based sampling to analyze the
temperature of pages. HeMem is implemented as a user-space
library that is transparently linked to applications. It handles
page faults using userfaultfd which introduces memory copy
between userspace and kernel space. Apart from this, two
userfaultfd patches are required to implement write-protection
faults and page-missing faults. Although Memtis outperforms
many other tiering memory systems, it is implemented in the
kernel and tightly coupled with the Linux kernel. Besides,
Memtis samples all processes on all CPU cores. In fact, many
memory access operations are not necessary for identifying
hot pages, such as kernel objects.

TMTS [8] combines both page table scanning and hardware
mechanism. The cold pages are identified by scanning the
page access bits. The hot pages are selected by precise event
sampling coupled with proactive and periodic scanning of page
tables. TMTS is also intrusive to the Linux kernel. On one
hand, it defines a custom system call for page promotion.
On the other hand, it extends in-kernel page access bits
scanner to track page hot age. The vIMM [38] proposed
the optimized page table scanning method based on the Intel
Page Modification Logging [39] mechanism. However, it only
works for the extended page table (EPT) entry.

VII. DISCUSSION

Comparison with Memtis. TieredMMS and Memtis have
distinct design objectives that could potentially complement
each other. Memtis primarily focuses on page size determi-
nation while TieredMMS focuses on easy deployment and
maintenance. Memtis modifies several critical kernel objects
for its metadata. TieredMMS maintains metadata in userspace,
achieving a separation between mechanism and policy, which
is not intrusive to the Linux kernel and facilitates maintenance.
Memtis samples all events on all CPU cores, which will incur
unnecessary overhead. TieredMMS samples the specified pro-
cess and its child task. Memtis maintains a promotion list for
the non-DRAM node and a demotion list for the DRAM node.
TieredMMS enhances the LRU lists by leveraging page access
information sampled by the hardware sampling mechanism.

Comparison with caching software. OpenCAS [40] and
CacheLib [41] are two typical caching software. OpenCAS
is a block caching software. It leverages a fast cache device
to accelerate the slow backend block devices. CacheLib ac-
celerates applications by providing APIs to manage key-value
pairs in the cache. It supports DRAM, NVM, and a mixture of
them as the cache device. They are different from TieredMMS.

First, they have different interfaces. OpenCAS provides the
application with a block interface. CacheLib provides the
application with a key-value interface. TieredMMS performs
data placement asynchronously without direct interaction with
applications. Second, they expose different capacities. Open-
CAS and CacheLib use the fast media as cache, and hence
the exposed capacity equals the backend device. TieredMMS
treats all devices that support load/store semantics as memory
devices. The exposed memory capacity is the sum of all types
of memory media.

VIII. CONCLUSION

We propose TieredMMS, a hardware-based and modular
tiered memory management system. It comprises a userspace
page access tracker and a page migration kernel module,
enabling easy deployment. Page access tracker, utilizing hard-
ware sampling, identifies hot/cold pages and signals the page
migration module via ring buffers. The page migration module
migrates the hottest pages to the DRAM node, optimizing the
utilization of diverse memory types. The evaluation shows that
TieredMMS outperforms state-of-the-art tiering systems by up
to 26.3% in 3/6 tests.
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