LodgeTree: A Last-Level Distributed and Surrogate
Buffer Tree for Non-Volatile Memories

Chunfeng Du*Y, Shengzhe Wang*¥, Suzhen Wu*™, Hong Jiang?,
Jiahong Chen*, Yingchao Ji*, Bo Mao*, Lvqing Yang*™
*Xiamen Key Laboratory of Intelligent Storage and Computing, School of Informatics, Xiamen University, Xiamen, China
TWuhan National Laboratory for Optoelectronics, Wuhan, China
iDepartment of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX, USA

Abstract—Although the emergence of Non-Volatile Memory
Techniques (NVMs) offers new insights into solving the problem
of memory shortage, tree-based indexing systems face perfor-
mance overhead when applied to the NVM due to the perfor-
mance difference between DRAM and NVM. The utilization
of buffer techniques exploiting DRAM can alleviate system
performance overhead. However, when directly applied to the
tree-based index system, it faces some challenges, such as high
memory overhead, high flush overhead, and complicated log
management. Meanwhile, NVM has some unique features, e.g.,
asymmetrical read/write, higher random read, and differential
access granularity, that should also be carefully focused on
in the design. Consequently, we propose LodgeTree, a last-
level distributed and surrogate buffer tree design in B+-Tree-
based index system. Specifically, LodgeTree fully utilizes the free
space situation in the last level of internal nodes of B+ Tree
to build a dynamic buffer and proposes three new techniques,
including Leaf-count Flush, Hotness-Aware Multiply Split, and
Partitioned Version Log, to reduce the memory space overhead,
refresh overhead, and log management overhead, and to improve
the system performance. Experimental evaluations show that
LodgeTree can achieve up to 7.4x and 1.7 x on average compared
with other schemes in system throughput.

I. INTRODUCTION

Emerging NVMs, with low latency, large capacity, and
byte addressability, are consistently expected as alternatives
to traditional volatile DRAM memory. Therefore, multiple
existing studies call for the development of novel and efficient
indexing data structures to effectively manage data in NVM-
based applications [7], [11], [12], [20], [25], [29], [31]. Tree-
based indexing is widely utilized in in-memory data centers
and data-intensive applications due to its ability to deliver
competitive read/write performance and support for range
queries [4], [16], [17], [19], [24]. Additionally, because of
the difference in the speed of write/read between DRAM
and NVM, applying the tree-based index system directly to
NVM devices will inevitably lead to performance degradation.
Without loss of generality, We leverage Persistent Memory
(PM) as a representative with NVM properties.

Recent studies have introduced various tree-based schemes
tailored for PM, including FAST+FAIR [13], wB+Tree [8],

S Corresponding Author: Suzhen Wu (suzhen@xmu.edu.cn) and Lvqing
Yang (Iqyang@xmu.edu.cn). "These authors have equal contributions.

and uTree [9]. However, these approaches treat PM as slower
DRAM with non-volatile features, allowing incoming key-
value pairs to be directly inserted into specific locations.
Meanwhile, researchers have discovered that real PM exhibits
specific characteristics in practice, e.g., high random read
latency and larger access granularity than cacheline [6], [27],
[28]. Furthermore, previous workload analysis have revealed
that small writes dominate real-world workloads and exhibit
strong locality [10]. The distinct characteristics of the device
and data feature of applications have inspired researchers to
redesign and improve their architecture. This effort is driven
by the necessity to align with specific workload features and
device capabilities. Current research emphasizes using buffer
technology to enhance the performance of tree-based index
systems [5], [15], [27], [32]. The buffer optimizes access
patterns to minimize random read/write operations on PM
devices while aligning with the CPU’s cache line to support
the larger access granularity inherent in PM systems.

The system-level buffer design usually temporarily allocates
memory space to store data to enhance performance. Similarly,
generic B-tree-based indexing systems utilize dedicated mem-
ory buffers to improve performance. Different buffer designs
for the B-Tree-based index systems architecture are compared
in Table I. For example, the DPTree [32] allocates a dedicated
buffer space outside the base Tree. Incoming key-value pairs
are first inserted into the buffer backed by a write-optimized
redo log. The buffer is merged into the base tree when it
reaches the size threshold. Moreover, previous studies have
also proposed setups for constructing buffers for each internal
node based on tree-based index structures. For instance, the
traditional B¢-Tree [5] utilizes the hierarchical structure of
B-Tree and sets the buffers inside each internal node across
multiple levels. Incoming key-value pairs are first inserted into
the root node’s buffer and then moved downward level by level
with the flush operation.

This paper focuses on building ingenious buffer designs for
B+-Tree tree structure-based NVM systems. While a single
dedicated buffer, as seen in the traditional B+-tree index
system (e.g., DPTree [32]), can effectively handle small writes
and improve query performance, it also faces some challenges.
First, the design of this buffer inherently increases additional
memory overhead to the system. Second, it exhibits high flush

TABLE I
COMPARISON OF DIFFERENT BUFFER DESIGNS FOR B-TREE-BASED INDEX SCHEMES.

DPTree [32] B¢-Tree [15] LodgeTree
Base Tree
Internal Nodes
Internal Nodes
Buffer Buffer Buffer Last-Level ,
Internal Nodes ! Pivols i ! Pivots i ! Pivols i Internal Nodés Node’s free space
ﬂusl/ \ / TN/ TN/ I \\ [[Index ﬂuffer | = -+-[index [] Buffer |
sansbhassnnysnnnnnnnnnnnunnnnsn ---.-.--------‘7 ------ 7-.--§: ------- g------------- CEEEEE R UL LR EE TN T Y ----é- --------
= | |]]]] — b
Redo Log Leaf Nodes Leaf Nodes Leaf Nodes i PVL

overhead, potentially resulting in elevated tail latency and
write stalls. Additionally, the multi-level buffer design, such as
the traditional B¢-Tree [5], usually assigns buffers to different
levels of each internal node, allowing for fine-grained flush
operations for each node. However, it also introduces complex
Write-Ahead Logging (WAL) management and the potential
for high cascade flushes.

Nevertheless, both approaches necessitate additional mem-
ory allocation to maintain the buffer design, which deviates
from the original objective of leveraging NVM to expand the
main memory capacity. Consequently, these two buffer-setting
methods for NVMs within a B+ tree framework may not
align with the intended purpose. Furthermore, our investigation
revealed an untapped potential in the memory space allocated
to the last-level internal nodes of a B+-Tree-based index.

To solve these challenges and better combine the advan-
tages of the B+-tree-based structure’s properties (i.e., internal
node free space) and data characteristics, this paper proposed
LodgeTree, a last-level internal-node distributed and dynamic
surrogate buffer design for a B+-Tree-based system, shown in
Section III. It can retain the advantages of the aforementioned
two buffer designs and overcome their shortcomings by uti-
lizing the unemployed space of last-level internal nodes. In
summary, this paper makes the following contributions:

(1) The analysis of typical buffer design for the tree-based
index system reveals some problems, such as memory
space overhead, high tail latency, and complicated log
management. Furthermore, experimental tests demon-
strate that 25% - 58% of the memory space allocated to
the internal nodes is unemployed in the B+-tree-based
index, illustrated in Section II-C. Both inspire us to
exploit the free space to construct the new buffer design
for the B+-Tree-based index system.

Taking the PM’s features, typical buffer design, and the
B+-tree internal node free memory space into consider-
ation, this paper proposed the LodgeTree, illustrated in
Section III, which mainly includes three critical tech-
niques, e.g., The Leaf Count-Based Flush, Hotness-Aware
Multiple Split, and Partitioned Version Log.
Experimental evaluations conducted on the LodgeTree
prototype demonstrate a remarkable enhancement in sys-
tem throughput, with LodgeTree achieving a speedup of
up to 7.4x and an average of 1.7x. Meanwhile, based on
the NUMA architecture, experimental results demonstrate
that our scheme outperforms existing schemes.

@)

3

II. BACKGROUND AND MOTIVATION
A. Unique Characteristics of PM

Understanding the unique characteristics of NVM is crucial
for designing effective storage systems. Although other NVM
products exist, such as Spin Torque Transfer RAM (STT-
RAM) and Resistive RAM (ReRAM) [1], [14], Intel Optane
Persistent Memory (PM) remains the widely used commercial
representative NVM. Besides its fundamental DRAM-like
characteristics, the Optane PM also comprises some distinctive
traits. First, the read/write granularity does not align with
the typical cache line size of 64 bytes. A larger access
granularity is needed to fully utilize PM bandwidth, prompting
the exploration of buffer designs to facilitate the transfer of
small accesses to a larger granularity. Second, research and
white papers have demonstrated that PM exhibits higher media
latency than DRAM, with random-read latency reaching 2.5
- 3 x that of DRAM [27], [28]. This disparity underscores
the imperative of minimizing random access to PM. In a B+
tree with numerous leaf nodes, each access to a leaf node
triggers a random read on PM. Consequently, each insertion
into the B+ tree via point insertion incurs a costly random-read
operation, culminating in elevated insert latency. This under-
scores the importance of considering buffer designs to mitigate
the expensive overhead of random read/write. Certainly, with
the development and advancement of future generations of
the latest PM technologies, it is hopeful that general-purpose
PM will ultimately be able to address the limitations currently
faced by Optane. Our research primarily centers on Intel
Optane PM [2] as a key platform for conducting various
research explorations in this paper.

B. Buffer Designs for B-Tree-based Schemes

Integrating buffers is instrumental in enhancing the per-
formance of B-tree-based indexing systems [5], [15], [32].
However, this also will encounter some challenges. The typical
buffer design schemes can be broadly categorized into two
main types in this paper, such as the Single Buffer Mechanism
(SBM) and the Multiple Buffer Mechanism (MBM).

1) Single Buffer Mechanism (SBM): The SBM’s design
usually leverages a single dedicated buffer (in DRAM) to
speed up write requests with the DRAM-PM layout. Next,
we take DPtree as an example to analyze the problems and
challenges in detail. DPTree [32] designs two levels of B+-
Tree. The first is the Buffer Tree in DRAM, which uses

—4*—Flush Latency Buffered Entries m WAL wmBuffer mFlush = Flush wait

(&2

1400 m 100%
£ 1200 43 8%
2 1000 @
o (=%
£ 80 3 60%
T 600 28 4%
< 400 a
] 0
2 200 o 2%
= L a et =
0 B 0 0%
0 10 20 30 40 50 60 70 TE T#L T2 T3

Flush # Thread
(1 @
Fig. 1. Two performance evaluations of DPTree: (1) Changes of flush latency
and number of buffered entries with increased flushes. (2) Breakdown of the
insert time in DPTree with 1 flush thread (Tf) and 3 execution threads (Tx1,
Tx2, and Tx3).

a write-optimized PM redo log to ensure crash consistency.
When the Buffer Tree reaches a predefined threshold, DPTree
will activate the background threads to flush the key-value
pairs in the Buffer Tree’s leaf node layer into the leaf nodes
of the Base Tree in PM. Base Tree uses a DRAM-PM layout,
with internal nodes in DRAM and leaf nodes in PM.

Employing dedicated memory space as a buffer can bring
some performance gains. However, it also faces some chal-
lenges, as follows. (1) High memory space overhead: Based
on the default setting of DPTree [32], with the continuous
growth of the Buffer Tree, the occupied memory space grad-
ually increases. Figure 1(1)(Y-axis on the right) shows that
the number of buffered entries continues to increase with the
number of flush times. Though the threshold in DPTree can
limit the buffer size, the additional memory space consumed
remains to be taken seriously. (2) High flush overhead:
DPTree needs to flush the buffered data in the Buffer Tree to
the leaf nodes of the Base Tree. As the Buffer Tree grows,
the flush operation needs significant latency overhead and
can lead to long tail latency. Figure 1(1)(Y-axis on the left)
shows the latency of each flush during the process of inserting
50M key-value pairs. As the number of flush times increases
and the Buffer Tree becomes larger, the latency of the flush
operation gradually increases, from 9ms to an astonishing 1.4s.
Meanwhile, it is also why DPTree’s throughput fluctuates so
widely, as shown in Figure 2.

Furthermore, substantial flushes overhead will block other
threads in a multi-threaded environment, leading to more
significant results, i.e., write stalls. Figure 1(2) shows a
breakdown of the insert time into the four sections: write-
ahead log (WAL), insert Buffer Tree (Buffer), flush (for flush
threads), and wait for flush (flush wait, for execution threads),
with 1 flush thread and 3 execution threads. It is important to
note that the waiting time of execution threads accounted for
about 60% of the total time, meaning that these threads spend
the majority of time waiting for the flush to complete.

2) Multiple Buffer Mechanism (MBM): MBM can usually
provide small buffers for multiple internal nodes in the B-tree-
based index system. Next, we take the B¢-Tree as an example
to analyze these problems and challenges in detail. B*-Tree is
designed for HDDs [5] and can be optimized for commodity
SSDs [15]. It splits an internal node into two sections: the
pivots part, which stores the index pointers, and the buffer

FAST+FAIR
DPTree
Be-Tree

=
o

Be-Tree ends

o
o

Throughput (Mops/s)
=

A

DPTree ends FAST+FAIR ends

0
0 10 20 30 40 50 60 70 80 90 100 110
Elapsed Time (s)

Fig. 2. Single-threaded write performance of DPTree (single-level centralized
buffer), B€-Tree (multiple-level distributed buffer) and FAST+FAIR (point
insertion) with S0M key-value pairs.

part, which stores the buffered key-value pairs.

The MBM’s design can provide finer-grained flush operation
to avoid long flush latency, as shown in Figure 2. However,
it also faces challenges. (1) Complicated log management:
After flushing the buffer to the PM leaf nodes, the correspond-
ing log space can be released, but in the case of B¢-Tree, the
distributed buffers in each internal node result in inconsistent
log invalidation times. Moreover, the MBM forces the buffered
data through multiple layers to reach the leaf nodes in PM,
leading to longer WAL. (2) High cascade flush overhead:
When B°¢-Tree flushes buffered data downwards, and the
targeted lower node is also complete, B¢-Tree will trigger a
cascade flush. A key-value pair insertion may trigger multiple
level nodes’ flush and structural adjustment operations (e.g.,
node split), leading to long tail latency.

Furthermore, the concurrency splitting of multiple internal
nodes also contributes to the extended tail latency. Given
that PM leaf nodes are at the lowest level, they experience
more frequent splits. When an internal node flushes data to
numerous leaf nodes, it can lead to the concurrent splitting of
multiple leaf nodes, resulting in prolonged tail latency. This
concurrent splitting phenomenon adds to the overall latency,
impacting system performance and responsiveness.

C. Motivation

The buffer design can help mitigate performance discrepan-
cies in the Tree-based index system arising from the distinct
characteristics of different devices. However, the Tree-based
index NVM system must carefully consider challenges such
as memory space overhead, flush overhead, and complex WAL
management. Structural analysis and experimental results re-
veal that last-level internal nodes in B+-Tree-based indexing
structures have a significant amount of empty slots, ranging
from 25% to 58%, which aligns with previous studies [13].
Meanwhile, the existence of unoccupied slots also inspires us
to take the free space into special consideration as a temporary
buffer for leaf nodes. Recognizing the importance of buffer
design in a B+-Tree-based NVM system, we proposed Lod-
geTree. This dynamic and distributed surrogate buffer design
leverages the unused space in last-level internal nodes. By
combining the performance characteristics of PM with the
advantages of B+-Tree structure characteristics, the LodgeTree
scheme can reduce flush overhead, mitigate complex log
management, and thus improve system performance.

III. DESIGN OF LODGETREE

A. LodgeTree Overview

LodgeTree, designed to uphold the advantages of buffers
in B+ tree-based indexing systems while minimizing memory
overhead and write flush overhead, showcases an architectural
overview in Figure 3. This overview exemplifies the creation
of a single-level distributed buffer that cleverly utilizes the
available free space in the last-level internal nodes. Initially,
incoming key-value pairs find their way into the Partitioned
Version Log to ensure crash consistency, illustrated in Sec-
tion III-D. The key-value pairs seamlessly integrate into the
buffer parts of the last-level internal nodes. When a buffer
part of a last-level internal node reaches its capacity thresh-
old, a Leaf Count-Based Flush mechanism will be activated,
efficiently transferring the buffered key-value pairs to their
respective leaf nodes in PM. This transfer process is elaborated
upon in Section III-B, where crash-consistent merge and node
split operations occur. Moreover, in cases where a last-level
internal node becomes full, LodgeTree executes a Hotness-
Aware Multiple Split operation, dividing the node into three
parts without introducing significant latency. This operation
is detailed in Section III-C. Additionally, LodgeTree imple-
ments a coarse-grained lock management system featuring a
read/write lock for each last-level internal node during key-
value pair insertion or search operations to ensure effective
concurrency control. By acquiring the read/write lock in the
write state, a thread effectively restricts other threads from
accessing the last-level internal node and its associated leaf
nodes. This strategic approach eliminates the necessity of
locking leaf nodes during key-value pair flushing, thereby
reducing lock overhead and enhancing system performance.

Node structures: In LodgeTree, the organization of last-
level internal and leaf nodes is demonstrated in Figure 4.
Each last-level internal node has a header and a predetermined
number of key-value pairs. The header comprises some fields
such as buf _start, split_key and buf ver. buf_start indicates the
starting position of the buffer part. The split_key variable stores
the split key of the node when it was last split. The buf ver
array records the version numbers of key-value pairs in the
buffer part in support of the partitioned version log technique.
The split_key, inserted into the parent node of a newly split
node, is used to index the newly created node from the split.
Moreover, the leaf _count array facilitates the leaf-count-based
flush technique. Within a last-level internal node, the key-value
pairs are segregated into two parts: the Index Part and the
Buffer Part. The former contains sorted keys and pointers that
index the corresponding leaf nodes. In contrast, the latter is a
temporary repository for unsorted key-value pairs, including
a designated slot for pairs generated during leaf node splits.
This organization ensures efficient management and retrieval
of key-value pairs within LodgeTree’s last-level internal nodes,
optimizing performance and facilitating operations.

A leaf node in LodgeTree comprises a header containing
essential metadata and multiple key-value slots. To minimize
persistence overhead, LodgeTree adopts a strategy of leaving

@© Insert to the buffer

@ Hotness-Aware

Multiple Split
Last-Level wHpe Spi
Internal Nodes =

Node’s free space

]

LeafNodes[J— -[__}> - —

Partitioned Version Log

Fig. 3. Architecture overview of LodgeTree.

key-value pairs within the leaf node unsorted. Instead, it
utilizes a bitmap in the header to ensure the crash consistency
of the key-value slots, enhancing data integrity and reliability.
Additionally, the header encompasses two sibling pointers,
next0 and nextl, along with a use_n bit to determine the
efficient utilization of sibling pointers during log-less split
operations. This design choice is driven by the high cost
associated with logging operations, as highlighted in prior
research [13], [21]. By incorporating these features into the
leaf node structure, LodgeTree optimizes performance, dura-
bility, and operational efficiency, offering a robust foundation
for key-value storage and retrieval.

B. Leaf Count-Based Flush

The Leaf Count-Based Flush technique is designed to
mitigate long-tail latency caused by concurrent leaf-node splits
during the last-level internal node’s flush process. It accom-
plishes this by limiting the number of PM leaf nodes accessed
in parallel during the flush and orchestrating the flush execu-
tion to avoid triggering any leaf node splits. To implement this
methodology effectively, every last-level internal node is asso-
ciated with an array named leaf_count, comprising N 1-byte
integers, as illustrated in Figure 5, where N signifies the total
number of slots within the internal node. The leaf _count array
is segmented into two distinct sections, aligning with the index
and buffer parts of the internal node, with buf start marking
the boundary. Each integer records the count of key-value pairs
housed in the respective leaf node within the index section. In
contrast, in the buffer section, each integer precisely designates
the specific leaf node to which the buffered key-value pair is
assigned. This systematic organization and management of the
leaf_count array are crucial for optimizing the flush process,
improving performance, and ensuring the smooth operation of
LodgeTree’s storage mechanisms.

When a key-value pair is added to a last-level internal node,
the Index Part undergoes key comparisons to determine the
pair’s destination node, identified as leaf pos. Subsequently,
the key-value pair is integrated into the Buffer Part, with the
insertion position buffer_pos being recorded. Finally, the value
at position buffer_pos within the leaf _count array is adjusted
accordingly, setting leaf_count[buffer_pos] to leaf pos. This
sequential process ensures the accurate mapping and organi-
zation of key-value pairs within the data structure.

0
ileaf_count | buf_ver | is_pin | lock |depth | min Ibuf_start |sp|it_key|ps_c0unter|Is_counteri

Index Part E Buffer Part

Internal
Nodes

| header | Key, | Key, | |Keym,1|Reserved |BKeyo|BKey1| IBKeyn-1
: DRAM

PM

Nodes

/ \
Leaf |header| Kvol KV1| szl | KV, I—o —.I | |
| ——

d
"R nexty | nextz| use_nl lock | min Ibitmaplfingerprintsi

Fig. 4. Structures of last-level internal nodes and leaf nodes.

leaf_count s

[18] [17] 15] 2 [ma] -]
0 ¥ /l m-1 ~ m+1 m+2 n-1
Key, | Key, Key,,., | Reserved |BKey0| BKeyll |BKey,,_1|
header
buf_start

25 18 21 Y 15
Note: leaf node with 25 kv pairs

E leaf_count[n-1]: BKey,.1 belongs to the first leaf node

n-1

Fig. 5. The structure of leaf_count array of a last-level internal node.

The Leaf Count-Based Flush is performed when the Buffer
Part is full. Two thresholds are used to control the flush
process: tno4e, Which indicates the maximum number of leaf
nodes that can be accessed for each flush, and ?p;;;, which
indicates the maximum number of key-value pairs a leaf node
can store. The Buffer Part is traversed from left to right to
group the buffered key-value pairs according to their targeted
leaf nodes. With the help of the leaf count array, the target
node of each buffered key-value pair is recorded. During this
process, there are two cases to stop grouping and start flushing.

First, the grouping process stops, and the flush process starts
when the number of targeted leaf nodes reaches the threshold
tnode, Which means that this flush will access too many PM
leaf nodes. As illustrated in Figure 6(1), t,o4. 1S set to 2,
which means that one flush can only access two PM leaf
nodes. However, in this case, buffered key-value pairs have
a combined total of three targeted leaf nodes, which exceeds
the t,04. threshold. Consequently, only pairs with keys 12 and
13 can be flushed to leaf node LN; and pair with key 24 to
leaf node L N», completing the flush operation.

Second, the grouping process stops, and the flush process
starts if a leaf node is about to split during the Buffer Part
traversal. As illustrated in Figure 6(2), where the node split
threshold ¢,y is set to 27. The leaf count value of the first
buffered pair with key 25 is 3, which means that this buffered
key-value pair’s targeted leaf node is LN,. But for LNs, its
leaf_count value is 27, reaching the ,;; threshold, meaning
that this leaf node is about to split. As a result, only the key-
value pairs belonging to the leaf node LN, are flushed. That is,
only pairs with keys 25 and 27 are flushed. Following the flush,
the pair with key 25 and the pointer to the newly generated leaf
node are inserted, and the values in leaf_count are updated.

When flushing key-value pairs to PM leaf nodes, crash-
consistent merge and split operations are performed, lever-
aging the PM characteristic of 8-byte atomic write to ensure

Number of target nodes: 3 Number threshold (t,,q): 2

AnAn

A

Ieaf_count:l 15 [24 [25 [15 l 15 [26 [26 [15 [" ["

-
12 [1alf 24 f a1 | [10]20]30 [~

[Ts b Trop>{ 20} >fi 0] [5P [10}o{ [0l [20]

LN, LN LNX, 7 LNy, LN, LN, LN, LN,

~~~~~~

2]

A A

records:l 10[ 20 [ 30| r

31]

ot

Flush queues: [12, 13] — LN;

(1) The case of all buffer flush.

[24] > LN,

equal to 27 Split threshold (tgy;): 27

Ieaf_count:|15[25[z7[15[ 2 [ 1 [ 2[ 3]

A

|15[26[14[15[15[1 3]

records: [ 10] 20 30 [Tfl] 25 14l 27 s2]  [10] 20]25 [0 o] 1a] ~ [ 2]
=2 _tore
5 b [10p] T20}] [20 ,"r
N, L[N, LNX_ LN [N, LN, LN, LNg LN,

______

Flush queues: [25, 27] — LN,
(2) The case of selective split flush.

Fig. 6. Two cases of leaf count-based flushes.

crash consistency. For leaf node merge, as a 512-byte leaf
node contains fewer than 64 key-value slots, the bitmap is
less than 8 bytes, allowing the entire bitmap update operation
to be completed with a single PM atomic write. The merge
process involves searching for key-value slots in the leaf node,
writing the pairs to empty slots, persisting the pairs with a
single CLFLUSH, and updating the bitmap by modifying the
corresponding bits from ”0” to ”1” and then persisting the
bitmap with CLFLUSH to complete the merge operation.

During leaf node splitting, a log-less mechanism is im-
plemented, inspired by the designs in LB+Tree [21] and
DPTree [32]. This mechanism utilizes two sibling pointers,
next0 and nextl, along with the use_n bit to indicate the
currently used sibling pointer. During the process of splitting,
if use_n points to next0, next! will point to the new node.
Once the new node is prepared, use_n is switched from next0
to nextl, signifying the completion of the node split. Since
use_n is smaller than 8§ bytes, an atomic write makes the switch
operation crash consistent.

C. Hotness-Aware Multiple Split

The Hotness-Aware Multiple Split approach is devised to
enhance buffer space utilization while minimizing extended
tail latency. Key-value pairs are stored in free slots of last-level
internal nodes, directly impacting buffer efficiency. However,
increasing the number of split nodes may lead to more
Structured Modification Operations (SMOs), triggering write
bursts and causing long latency. To mitigate this issue, the
approach permits last-level internal nodes to split into more
new nodes during a write burst and fewer new nodes when
the burst diminishes, without necessitating upper-level node
splits. This balances buffer space and split latency effectively.

In LodgeTree, an ingenious approach is adopted to assess
the system’s activity level, leveraging two counters within each
last-level internal node in conjunction with a global counter,



write stage write stage
ps_count Is_count
(penultimate split) (last split) global_count
_____ N| N »! now
\ | J
A\l Y
Interval_Ip Interval_nl

Fig. 7. Timeline of the three counters and two intervals.

M: 3+1=4

M: 3-1=2

e

© Reducing Split

® Adding Split

@ Normal Split
(Default)

Fig. 8. Three types of last-level internal node split in hotness-aware multiple
split.

as depicted in Figure 7. The initial counter, ps_counter, logs
the timing of the penultimate split, while the subsequent
counter, Is_counter, precisely captures the timing of the last
split event. Complementing these internal node counters is
the global_counter, which provides insights into the sys-
tem’s cumulative runtime. When a last-level internal node
approaches the threshold for splitting, LodgeTree orchestrates
a comparison between interval_Ip (Is_count - ps_count) and
interval_nl (global_counter - Is_count) to evaluate the pace of
buffer depletion. Should interval_Ip exceed t times interval_nl,
indicating a notable surge in data volume, a write burst is
identified. Conversely, if interval_Ip is more than ¢ times
smaller than interval_nl, it signifies a cooling-off period for the
node. Any other scenarios are categorized as stable periods.
This dynamic comparative analysis empowers LodgeTree to
fine-tune the number of new nodes a last-level internal node
can split into, effectively tailoring the system’s behavior to the
prevailing workload conditions.

Now that LodgeTree can assess the hotness of a last-level
internal node, it can execute various node split strategies.
Figure 8 shows three types of last-level internal node splits
in hotness-aware multiple split. Suppose a last-level internal
node split M nodes last split. When a last-level internal node,
which previously split into M nodes, experiences a write burst,
LodgeTree will employ an adding split, causing the node to
split into M+ new nodes. This action aims to introduce new
nodes to distribute the hotspot data and increase the buffer
size of each new node. Conversely, during a cooldown period,
LodgeTree will implement a reducing split, causing the node
to split into M-I new nodes to conserve DRAM space. In stable
periods, LodgeTree will execute a normal split, leading to the
node splitting into M nodes.

When a node encounters a write burst (interval_Ip > t X
interval_nl), this node’s split should avoid SMOs of upper-
level nodes. This is because SMOs of upper-level nodes may
incur extra long latency. To achieve this, a last-level internal
node should also consider the space of upper-level nodes.

M: 4

X:3 M: 4

X:1

split into 2 new nodes

OXxX=1

split into 3 new nodes

split into 4 new nodes

OM<X A M>=X

Fig. 9. Three situations of hotness-aware multiple split when considering

space of upper-level nodes.

@ Insert entry to this log and find it is fulli L Log entries

~
~
(@ Create new logs with a new version
]

Global version: 0 — 1 (@ Update the global version and the valid entries

0 —»lversiun:ol KV | KV }----"iversion: u A

1
]
=
1
]
=

1 —>|versi0n:0| KV | KV }'“-"iversion: l:L &

L

N Partitions

-l —>|version:0| KV | Kv I‘“"’iversion: T

#of valid entries:[ Versions | 0 [ 1 |
|V_a|idnumber| NxL | NxL |

Fig. 10. The structure of the partitioned version log.

Suppose the upper-level node has X free slots, and the last-
level internal node is about to split into M new nodes. To the
end, the number of nodes split from this node N needs to meet:

M, M<X
N={X, M>XAX#1 (1)
2, X=1

Note that when a node is split into M new nodes, only M-
1 new (key,ptr) pairs will be inserted into the upper-level
node. As shown in Figure 9, the meaning of Formula 1 is:
when X = 1, the upper-level node must split. At this time,
to reduce the waiting time for the remaining writes, this last-
level internal node will only split into two new nodes in the
end. When X < M, to avoid the upper-level node splitting,
this last-level internal node will be split into X new nodes to
make the upper-level node just not split.

D. Partitioned Version Log

The Partitioned Version Log (PVL) addresses the complex-
ity of Write-Ahead Log (WAL) management in the distributed
buffer of last-level internal nodes. Figure 10 illustrates its
structure. The core idea of PVL is to allocate a specific number
of log entries, track the count of invalid key-value pairs after
each buffer flush, and free or reuse space when the count
reaches zero. In the setup with N threads, N partitions are
initially allocated, each with a linked list. Each node in the list
represents a log with L log entries sharing the same version
number. To facilitate log space recycling, the count of valid
log entries for each version is recorded and decreases during
buffer flushes. When a thread writes data to PVL, the entry is
appended directly to its partition’s current log. If the current
log is full, PVL creates new logs with an incremented version
number (e.g., by 1). Subsequently, PVL updates the global
version and the count of valid entries, as shown in Figure 10.



—E—FAST+FAIR —0—DPTree Be-Tree  —8—ROART  —e—LodgeTree
= 14 28 20 16 16 -
£12 24 16
= 10 20 12 12
< 8 16 12
= 8 8
a2 6 12
= 4 /
Y 8 4 4
S 2 4
£ 0 0

1 2 4 81632
Threads

(1) Insert only

1 2 4 81632
Threads

(2) Search only

1 2 4 816 32
Threads

(3) Insert hot data

1 2 4 81632
Threads

(4) Insert:Search=1:1

Fig. 11. The results of different schemes under different workloads.

1 2 4 81632
Threads

(5) Insert:Search=1:2

After a key-value pair is inserted into PVL, its version
number is recorded with buf ver in the target last-level internal
node’s header. Meanwhile, the key-value pair is inserted into
the corresponding buffer part. During the buffer flush, since
each buffered key-value pair can find its corresponding version
number in the buf ver, the number of valid entries of the
version number in buf ver can be decreased. Suppose the
number of valid entries of one version is reduced to 0. All
key-value pairs with this version number are flushed to the
PM leaf nodes, allowing this log space to be freed or reused.

IV. PERFORMANCE EVALUATION
A. Environment & Implementation

Experimental Environment: Experimental evaluations
were performed on a Linux server with kernel version 5.4.0
and two 24 cores Intel Skylake-SP Xeon 5318 2.10GHz CPU
with 22MB L3 cache. The server has 96GB of DDR4 DRAM
and eight Intel Optane DC PMMs with 1024 GB total capacity.
The Intel Optane DC PMMs are configured in the App Direct
mode and mounted with the XFS-DAX file system. We also
conducted the experimental evaluation based on the server’s
NUMA architecture, as demonstrated in Section I'V-D.

Prototype Implementation: We implemented the prototype
of LodgeTree in C++11 based on the FAST+FAIR [13]. By
default, the node size of LodgeTree is 512 bytes, which also
includes the 27 key-value slots in a PM leaf node and 29 key-
value slots in each internal node. We set the threshold ¢,,04e
to be 2, ¢4y to be 26 for leaf-count based flush. All these
parameters are configurable, and we conduct the corresponding
sensitivity evaluations. Additionally, based on the fact many
tree-based indexes are optimized for fixed-sized KV [13],
[16], [22], we also evaluate the performance of LodgeTree
with the same size (8 bytes) of the key, compared with other
schemes: FAST+FAIR [13], DPTree [32], B¢-Tree [5], and
ROART [22], illustrated as follows.

o FAST+FAIR: The FAST+FAIR is a state-of-the-art per-
sistent B+-Tree to optimize the insertion and search
algorithms for PM.

e DPTree: DPTree is designed to batch multiple writes in
a concentrated memory persistently and later merge them
into a PM component to amortize persistence overhead.

¢« ROART: ROART is a Range-query Optimized Adaptive
Radix Tree to reduce PM persistence overhead.

e B¢-Tree: Designed for write-optimizing for the on-disk
storage, B¢-Tree allocates the internal node space for a
buffer to store messages, which absorbs updates that will
eventually be flushed to items in leaves under this node.

Since the B*-Tree is designed for disk-based storage, we
rewrite it for DRAM/PM hybrid storage based on its open-
source implementation [3]. Moreover, we use open-source
implementations of the other schemes (e.g., FAST+FAIR,
DPTree, and ROART) for comparison.

B. Micro-benchmark

We evaluate the basic insert and search efficiency, exploiting
the micro-benchmark [26] in which we can also configure
its parameters. In the micro-benchmark [26], different values
of the zipfianconstant parameter represent different skewness
of the data. We can change the values of these parameters
to adjust the distribution of Zipf and generate other data
with various read/write ratios or skewness. The experiment
generated 50M of data in each of the five workload configu-
rations: (1) insert only, 100% inserts. (2) search only, 100%
search. (3) insert with strong locality, 100% inserts (i.e., 80%
of the insertions are for 20% data). (4) insert : search =
1:1, 50% insert and 50% search, (5) insert : search = 1:2,
34% insert and 66% search approximately. Based on these
configurations’ data, we assessed the performance variation
of different schemes as the number of threads increased.
Moreover, we perform an insert operation employing 50M
key-value pairs generated randomly to warm up the system
before executing the following experiments.

Insert only: Figure 11(1) shows the insert only throughput
curves of all schemes. LodgeTree performs best and outper-
forms other schemes by up to 2.5x with an average of 1.8x.
First, compared with FAST+FAIR and ROART, LodgeTree
can better utilize the PM access granularity to reduce random
access. Second, LodgeTree’s fine-grained flush mechanism can
avoid DPTree’s high flush overhead and better utilize PM’s
bandwidth advantage in multi-threaded scenarios. Moreover,
compared with the B¢-Tree, LodgeTree can also avoid the
high cascade flush, leading to a much higher throughput.

Search only: The Figure 11(2) shows the search throughput
curves of all schemes. LodgeTree and DPTree outperform
the other schemes by up to 4.7x with an average of 1.7x.
Compared with ROART and FAST+FAIR, both without the
buffer design, LodgeTree can directly hit the key-value pairs



—&—-FAST+FAIR —o—DPTree Be-Tree —=—ROART —o—LodgeTree
1.7E5 [ 9 30 1.2E5 $1.0E5 9—4.0E4 »

Z 800 » 800 80 600
>, 600 600 600 r
9 15 400
& 400 400 400
3 10
3 200 5 200 200 200

0 0 0 0 0

P92 P93 P9* P93 L100 P92 P93 P9* P95 L100 P92 P93 P9* P95 L100 P92 P93 P9* P95 L100 P92 P93 P9* P93 L100

(1) Insert only (2) Search only

(3) Insert hot data

(4) Insert:Search=1:1 (5) Insert:Search=1:2

Fig. 12. Tail latency of different schemes with 1 thread. The P92, P93, P94, P95 and L100 represent P99, P99.9, P99.99, P99.999 and Last 100 respectively.

buffered in last-level internal nodes in DRAM, thus avoiding
costly PM random accesses. However, the B¢-Tree scheme
uses a multiple-level buffer design, in which the searching
process will go through multiple levels to increase the search
overhead greatly. Consequently, the search performance of
LodgeTree and DPTree is much better than that of B¢-Tree.

Insert with strong locality: Figure 11(3) shows the insert
throughput curves of all schemes under workload with strong
locality. LodgeTree outperforms the other methods by up to
2.9x with an average of 2.0x. The critical reason includes
three aspects. First, since ROART and FAST+FAIR update
data in PM, the hot data will inevitably cause repeated PM
flushes. By contrast, the buffer design in LodgeTree can absorb
these repeated updates in the buffer and avoid repeated PM
flushes. Second, the multiple-level buffer design in B¢-Tree
first absorbs data in the upper-level nodes. This can cause the
buffer space in upper-level nodes to fill quickly, triggering
cascade flushes that degrade the performance. Third, as the
number of threads increases, the impact of flush-induced write
stalls in DPTree would incur performance degradation.

Mixed workloads: Figures 11(4) and (5) show the through-
put curves of all schemes driven by mixed workloads which
consist of different ratios between insert and search requests
(1:1 and 1:2). We can observe that, as the number of threads
increases, the throughput of LodgeTree consistently increases
and notably outperforms other schemes by up to 3.0x with
an average of 1.6x. Meanwhile, the result also implies that
LodgeTree can provide better scalability than other schemes,
especially for mixed workloads.

C. Tail Latency

The buffer’s superiority over a Tree-based index during the
writing process is evident in two key aspects: throughput,
as illustrated in Section IV-B, and tail latency, a crucial
performance metric in system evaluation. Figure 12 presents
the tail latency of various schemes, including P99, P99.9,
P99.99, P99.999, and the average latency of the highest 100 re-
quests (L100). LodgeTree consistently achieves the lowest tail
latency across all workloads. For instance, under the search-
only workload (Figure 12(2)), where flush operations are not
intensive, all schemes exhibit tail latencies below 30us. How-
ever, under workloads involving insertions (Figure 12(1),(3-
5)), only LodgeTree maintains a tail latency below 50us. In
contrast, other schemes experience significantly higher P99

——LodgeTree ——FAST+FAIR ——DPTree == optimized
0

I‘L

e O e
Time (100ns)

Fig. 13. Variation in the number of threads concurrently writing to PM over
time.

# of Write Threads in PM

latencies. For instance, under the insert-only workload, the
P99.999 latencies for FAST+FAIR, ROART, and LodgeTree
are 486.6us, 507us, and 16.06us, respectively.

The disparity in LI00 latency between LodgeTree and
other schemes is significant. LodgeTree’s distributed buffer
design conducts fine-grained flushes, notably reducing flush
overhead compared to DPTree. For ROART and FAST+FAIR,
long tail latency primarily results from structural modification
operations (SMO) like node splits. However, by adopting the
hotness-aware multiple split approach, LodgeTree ensures that
each split considers available space in upper-level nodes and
node data volume, thus avoiding long-latency SMOs in upper-
level nodes and reducing write waits at hot nodes. In B¢-Tree,
long tail latency stems from cascade flushes and concurrent
leaf-node splits. Moreover, LodgeTree’s buffer layout and leaf-
count-based flush strategy help avoid cascade flushes and
reduce the number of leaf node splits during a single flush,
resulting in significantly lower tail latency.

D. Other Evaluations

Multi-thread validation: Research findings [28] and our
analysis reveal a non-linear relationship between thread count
and throughput during write operations on PM devices. This
is due to limitations in the number and size of write buffers
within PM’s integrated memory controller (IMC). Exceeding
the optimal thread count (e.g., 4 threads) or reaching buffer
capacity triggers blocking, degrading system performance.
Figure 13 depicts thread dynamics during data writing with 32
threads, comparing DPTree, FAST+FAIR, and our approach.
The red line represents the optimal scenario of four threads for
maximum bandwidth, as established by prior research [28]. In
FAST+FAIR, where data resides entirely on PM, most thread
accesses are PM-based, resulting in the highest PM thread



—a—Normal Double Split —=—Hotness-Aware Multiple Split

16 100
©

(%2}

S 12 ¥
s e
58 8 49
2 O

=3

o

£

'—

1 2 4 8 16 32 0 5000

Threads

10000
Latency (us)

15000

Fig. 14. Effectiveness of hotness-aware multiple split.

—=—DPTree —¢—LodgeTree “\:

NN W
W

Log Entries Occupied (M)
W

0 :.o’ioj-;i}:.:;e,,;&’;\ ‘.\_{&1&[&1__ @
1 6 11 1 21 26 31
Elapsed Time (s)
Fig. 15. The number of log entries during execution for DPTree and
LodgeTree.

count. However, its throughput is lower due to heavy con-
tention with more than four threads. DPTree’s design causes
PM idling and reduced throughput, while LodgeTree sustains
around four threads writing to PM for extended periods. This
minimizes competition, enhances multi-thread throughput, and
maximizes PM bandwidth utilization, leading to superior write
throughput compared to the others.

Hotness-Aware Multiple Split: We compared insertion
throughput and latency between Normal Double Split and
Hotness-Aware Multiple Split in workloads with strong data
locality. Hotness-Aware Multiple Split ranges from 1.1 x to
1.4 x in multi-threaded scenarios, with the advantage becom-
ing more pronounced with additional threads. For instance, it’s
12% faster with one thread but 45% faster with 32 threads
compared to a Normal Double Split. This improvement is
due to simultaneous access by multiple threads to hot nodes,
allowing more efficient node splits to create extra buffer space
and reduce contention. The tail latency curve of hotness-aware
multiple split closely mirrors that of the Normal Double Split,
thanks to upper-level node space allocation during splitting,
minimizing complex modifications and reducing tail latency.

Partitioned version log: The design goal of the partitioned
version log is to simplify log management. As the data are
inserted, expired logs must be reclaimed in time without taking
up too much space. Figure 15 shows the number of log
entries (stored key-value pairs in logs) occupied by valid key-
value pairs per second during the data insertion of DPTree
and LodgeTree under four threads under workloads with no
locality. As data is inserted and buffer space increases, the
number of log entries used by LodgeTree with PVL slowly
grows, and invalid logs are continuously reclaimed. Compared
with DPTree, LodgeTree with PVL uses much fewer log

B FAST+FAIR

@ LodgeTree

5 DPTree
25

Throughput (Mops/s)

NUMAL1
(2) Insert with hot data

NUMAO NUMAL1
(1) Insert only

NUMAO

Fig. 16. Evaluation with 32 threads based on NUMA architecture. Note
that NUMAQO presents running in the PMs in CPUO. In contrast, the NUMAI
illustrates running in the PMs bounded in the far-end node (CPU1).

1111

Uniformly Zipf 0.5 Zipf_0.99 Zipf_1.5

Fig. 17. The system’s throughput under different data skew. The uniformly
denotes the uniform distribution. The Zipf_0.5 denotes the parameter of Zipf
is 0.5, and so on.

PN Wb
o O o o

Throughput(Mops/s)

o

entries and thus consumes less PM space, demonstrating the
efficiency of PVL in managing WAL.

NUMA Architecture: We conducted experiments with
two distinct workloads under MUNA architecture: insert only
means all insert operations obey uniform distribution, and
insert with hot data means 80% of the inserts are for 20%
data. Our server features two CPU sockets, both utilizing
PM. We designate tests bound to CPUO as local (NUMAO)
and those linked to CPU1 as remote (NUMAL). Figure 16
illustrates the evaluation within the NUMA architecture. The
results demonstrate that system throughput is nearly doubled
when accessing data locally on NodeO compared to Nodel,
which aligns with the anticipated latency disparity between
remote and local node access in a typical NUMA setup.
This emphasizes the significant performance advantage of
LodgeTree’s buffer mechanism, which is particularly evident
in NUMA environments.

Zipf distribution: The performance of a cache system can
be affected by the degree of data skewing. Using different
Zipf distributions, our study delved into LodgeTree’s perfor-
mance under varying degrees of data skewness. Illustrated in
Figure 17, the system’s performance across these distributions
demonstrates that higher Zipf distribution parameters boost
system throughput, reflecting increased data skewness. Under
a stable Zipf distribution, the system achieves 1.65x higher
throughput than a uniform distribution. This enhancement re-
sults from improved data caching, enabling more requests to be
serviced from the cache, thereby elevating system throughput.
Despite reaching a threshold where most hot data resides in
the cache, the system maintains a consistent throughput level
through cache replacement and refreshing processes.



@2 —#—1 thread ggg
ﬂé 4 32 threads 540
=3 8

g 2 =5
§ 1 3 10
& 0 § 0

D
10M 25M 50M 75M 100M =

/ DPTree Be-Tree LodeTree
Data Size

(1) Recovery time (2) Memory space

Fig. 18. Overhead results of recovery and memory space.

E. Overhead and Limitation

Overhead of Recovery: Figure 18(1) illustrates the recov-
ery time of LodgeTree under different data sizes with 1 and 32
threads. When utilizing a single thread, LodgeTree’s recovery
time escalates from 0.87s to 5.55s as the data size grows.
Conversely, with 32 threads, the recovery time rises from
0.17s to 2.10s with increasing data size. The results indicate
LodgeTree’s superior performance in a multi-threaded envi-
ronment. This enhancement can be attributed to the efficient
parallel reinsertion of key-value pairs in the log to last-level
internal nodes facilitated by LodgeTree’s partitioned version
log design. By executing reinsert operations concurrently, Lod-
geTree achieves a substantial boost in recovery performance
when multiple threads are engaged.

Overhead of Memory Consumption: Figure 18(2) shows
the actual DRAM memory space usages of DPTree, B°¢-
Tree, and LodgeTree under S0M data single-threaded insertion,
excluding the key-value data stored in the PM. Compared with
DPTree and B¢-Tree, LodgeTree’s surrogate buffer design
dramatically reduces the memory space overhead by 81.4%
and 65.5%. The main reason is that LodgeTree doesn’t need
extra memory as the particular buffer. This indicates that the
surrogate buffer design can exploit both the workload and the
B+-tree characteristics to reduce memory space overhead.

Limitation: Based on the above experimental analysis, we
discuss the following two limitations. 1) The buffer size in
LodgeTree is limited, illustrated in Section II-C, indicating that
the number of key-value pairs that can be stored is limited.
However, this is also the key to LodgeTree’s ability to reduce
the high flush (cascade flush) overhead without extra memory
space. 2) LodgeTree can not improve the performance of scan
search. Figure 19 shows the throughput under different YCSB
workloads. We observe that the throughput of LodgeTree low-
ers FAST+FAIT and DPTree under benchmark (95% range-
scan and 5% insert). The reason is that the center of gravity
of optimization of LodgeTree significantly reduces the latency
overhead from flush operations in the writes path.

V. RELATED WORK

The emergence of NVMs has underscored the significance
of tree-based indexing structures in the realm of storage system
development. FPTree [23] innovatively employs a fingerprint
technique to streamline leaf probes to just one, albeit neces-
sitating logging during node splits to maintain consistency.
In contrast, LB+-Tree [21] optimizes node splits without

Throughput(Mops/s)
= = N
o [4;] o

(3]

e |

Be-Tree ROART  LodgeTree

0
FAST+FAIR DPTree

Fig. 19. The scan performance of 50M KV pairs for different schemes along
with the elapsed time.

logging by leveraging Intel TSX instructions for concurrency
control. However, it is worth noting that the TSX directives
are deprecated and disabled by default in Linux environments.
On a different front, NBTree [30] achieves lock-free operations
by harnessing eADR in Optane PM, ensuring scalability and
minimal PM overhead. Beyond these approaches, various stud-
ies delve into algorithm optimization and device property ex-
ploitation. For instance, FAST+FAIR [13] eliminates logging
requirements while upholding the order of data entries. Sim-
ilarly, ROART [22] tackles PM persistence overhead through
strategies like selective metadata persistence, entry compres-
sion, and streamlined ordered split operations. Additionally,
WORT [18] guarantees consistency by executing a single 8-
byte failure-atomic write per update, thereby preventing the
necessity for extra logging or copy-on-write mechanisms.

Research on Intel Optane PM has revealed distinctive
characteristics, such as lower write latency than read latency
at the system layer and prolonged latency due to repeated
flushes to the same cacheline. While existing strategies pri-
marily focus on minimizing persistent memory writes in B+-
Tree-based systems, LodgeTree takes a different approach.
It targets reducing persistent memory read overhead from
random insertions and eliminating repeated flush operations.
By utilizing the free space of internal nodes and combining
multiple random insertions into a batch write to PM leaf
nodes, LodgeTree simultaneously reduces PM random read
operations and eliminates repeat flushes.

VI. CONCLUSION

This paper introduces LodgeTree, aiming to maximize the
performance characteristics of PM and the structural features
of B+-Tree. LodgeTree utilizes the unused space in the last-
level internal nodes to create a distributed and dynamic surro-
gate buffer for B+-Tree-based schemes. We have implemented
a prototype of LodgeTree and conducted extensive experi-
ments. The results demonstrate that LodgeTree significantly
enhances the system performance of state-of-the-art B+-Tree-
based schemes. Moreover, even in NUMA architecture, our
scheme outperforms other alternatives.

ACKNOWLEDGMENT

This work was supported by the National Key R&D Pro-
gram of China No. 2023YFB4502703, the National Natural
Science Foundation of China under Grant No. U22A2027 and
No. 61972325, and Open Project Program of Wuhan National
Laboratory for Optoelectronics No. 2021 WNLOKFO11.



[1

—

[2

—

[3]

[4

[5

=

[6

=

[7]

[8

[t}

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

REFERENCES

CrossBar High-Density Memory.
products/high-density-memory/, 2019.
Intel® Optane™ DC PM. https://www.intel.com/content/www/us/en/
products/memory- storage/optane-dc-persistent-memory.html, 2019.

A simple, reference implementation of a Be-Tree. https://github.com/
oscarlab/Be-Tree, 2020.

Joy Arulraj, Justin Levandoski, Umar Farooq Minhas, and Per-Ake
Larson. BzTree: A High-Performance Latch-Free Range Index for Non-
Volatile Memory. Proceedings of the VLDB Endowment, 11(5):553-565,
2018.

Michael A Bender, Martin Farach-Colton, William Jannen, Rob Johnson,
Bradley C Kuszmaul, Donald E Porter, Jun Yuan, and Yang Zhan. An
Introduction to B-trees and Write-Optimization. login; magazine, 40(5),
2015.

Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC Du. Charac-
terizing, Modeling, and Benchmarking RocksDB Key-Value Workloads
at Facebook. In Proceedings of the 18th USENIX Conference on File
and Storage Technologies (FAST’20), 2020.

Hao Chen, Chaoyi Ruan, Cheng Li, Xiaosong Ma, and Yinlong Xu.
SpanDB: A Fast, Cost-Effective LSM-tree Based KV Store on Hybrid
Storage. In Proceedings of 19th USENIX Conference on File and Storage
Technologies (FAST’21), pages 17-32, 2021.

Shimin Chen and Qin Jin. Persistent B+-Trees in Non-Volatile Main
Memory. Proceedings of the VLDB Endowment, 8(7):786-797, 2015.
Youmin Chen, Youyou Lu, Kedong Fang, Qing Wang, and Jiwu Shu.
uTree: a Persistent B+-Tree with Low Tail Latency. Proceedings of the
VLDB Endowment, 13(12):2634-2648, 2020.

Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and
Jiwu Shu. FlatStore: An Efficient Log-Structured Key-Value Storage
Engine for Persistent Memory. In Proceedings of the 25th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’20), 2020.

Alexander Conway, Abhishek Gupta, Vijay Chidambaram, Martin
Farach-Colton, Richard Spillane, Amy Tai, and Rob Johnson. Splin-
terDB: Closing the Bandwidth Gap for NVMe Key-Value Stores. In Pro-
ceedings of the 2020 USENIX Annual Technical Conference (USENIX
ATC’20), pages 49-63, 2020.

Kecheng Huang, Zhaoyan Shen, Zhiping Jia, Zili Shao, and Feng Chen.
Removing Double-Logging with Passive Data Persistence in LSM-
tree based Relational Databases. In Proceedings of the 20th USENIX
Conference on File and Storage Technologies (FAST’22), Santa Clara,
CA, 2022.

Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam.
Endurable Transient Inconsistency in Byte-Addressable Persistent B+-
Tree. In Proceedings of the 16th USENIX Conference on File and
Storage Technologies (FAST’18), 2018.

S Ikeda, K Miura, H Yamamoto, K Mizunuma, HD Gan, M Endo,
S1 Kanai, J Hayakawa, F Matsukura, and H Ohno. A perpendicular-
anisotropy CoFeB-MgO Magnetic Tunnel Junction. Nature Materials,
9(9):721-724, Jul. 2010.

Yizheng Jiao, Simon Bertron, Sagar Patel, Luke Zeller, Rory Bennett,
Nirjhar Mukherjee, Michael Bender, Michael Condict, Alex Conway,
Martin Farach-Colton, Xiongzi Ge, William Jannen, Rob Johnson,
Donald Porter, and Jun Yuan. BetrFS: A Compleat File System for
Commodity SSDs. In Proceedings of the European Conference on
Computer Systems (EuroSys’22), April 2022.

Wook-Hee Kim, R Madhava Krishnan, Xinwei Fu, Sanidhya Kashyap,
and Changwoo Min. PACTree: A High Performance Persistent Range
Index Using PAC Guidelines. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles (SOSP’21), 2021.
‘Wook-Hee Kim, Jihye Seo, Jinwoong Kim, and Beomseok Nam. CLFB-
tree: Cacheline Friendly Persistent B-Tree for NVRAM. ACM Transac-
tions on Storage, 14(1):1-17, 2018.

Se Kwon Lee, K Hyun Lim, Hyunsub Song, Beomseok Nam, and Sam H
Noh. WORT: Write Optimal Radix Tree for Persistent Memory Storage
Systems. In Proceedings of the 15th USENIX Conference on File and
Storage Technologies (FAST’17), 2017.

Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and
Thomas Willhalm. Evaluating persistent memory range indexes. Pro-
ceedings of the VLDB Endowment, 13(4):574-587, 2019.

https://www.crossbar-inc.com/

[20]

(21]

(22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

Yongkun Li, Zhen Liu, Patrick PC Lee, Jiayu Wu, Yinlong Xu, Yi Wu,
Liu Tang, Qi Liu, and Qiu Cui. Differentiated Key-Value Storage
Management for Balanced I/O Performance. In Proceedings of the 2021
USENIX Annual Technical Conference (USENIX ATC’21), pages 673—
687, 2021.

Jihang Liu, Shimin Chen, and Lujun Wang. Lb+Trees: Optimizing
Persistent Index Performance on 3DXpoint Memory. Proceedings of
the VLDB Endowment, 13(7):1078-1090, 2020.

Shaonan Ma, Kang Chen, Shimin Chen, Mengxing Liu, Jianglang Zhu,
Hongbo Kang, and Yongwei Wu. ROART: Range-query Optimized
Persistent ART. In Proceedings of the 19th USENIX Conference on
File and Storage Technologies (FAST’21), 2021.

Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and
Wolfgang Lehner. FPTree: A Hybrid SCM-DRAM Persistent and
Concurrent B-Tree for Storage Class Memory. In Proceedings of the
2016 International Conference on Management of Data (SIGMOD’16),
2016.

Chundong Wang, Sudipta Chattopadhyay, and Gunavaran Brihadiswarn.
Crash Recoverable ARMv8-oriented B+-Tree for Byte-Addressable Per-
sistent Memory. In Proceedings of the 20th ACM SIGPLAN/SIGBED
International Conference on Languages, Compilers, and Tools for Em-
bedded Systems (LCTES’19), 2019.

Jing Wang, Youyou Lu, Qing Wang, Minhui Xie, Keji Huang, and Jiwu
Shu. Pacman: An Efficient Compaction Approach for Log-Structured
Key-Value Store on Persistent Memory. In Proceedings of the USENIX
Annual Technical Conference (USENIX ATC’22), July 2022.

Zigi Wang, Andrew Pavlo, Hyeontack Lim, Viktor Leis, Huanchen
Zhang, Michael Kaminsky, and David G. Andersen. Building a Bw-
Tree Takes More Than Just Buzz Words. Proceedings of the 2018
International Conference on Management of Data (SIGMOD’18), 2018.
Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang, and Hong Jiang.
Characterizing the Performance of Intel Optane Persistent Memory—A
Close Look at its On-DIMM Buffering. In Proceedings of the European
Conference on Computer Systems (EuroSys’22), April 2022.

Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and
Steve Swanson. An Empirical Guide to the Behavior and Use of Scalable
Persistent Memory. In Proceedings of the 18th USENIX Conference on
File and Storage Technologies (FAST’20), 2020.

Ting Yao, Yiwen Zhang, Jiguang Wan, Qiu Cui, Liu Tang, Hong Jiang,
Changsheng Xie, and Xubin He. MatrixKV: Reducing Write Stalls
and Write Amplification in LSM-tree Based KV Stores with Matrix
Container in NVM. In Proceedings of the 2020 USENIX Annual
Technical Conference (USENIX ATC’20), pages 17-31, 2020.

Bowen Zhang, Shengan Zheng, Zhenlin Qi, and Linpeng Huang.
NBTree: a Lock-free PM-friendly Persistent B+-Tree for eADR-enabled
PM Systems. Proceedings of the VLDB Endowment, 15(6):1187-1200,
2022.

Wenhui Zhang, Xingsheng Zhao, Song Jiang, and Hong lJiang.
ChameleonDB: a Key-value Store for Optane Persistent Memory. In
Proceedings of the 16th European Conference on Computer Systems
(EuroSys’21), pages 194-209, 2021.

Xinjing Zhou, Lidan Shou, Ke Chen, Wei Hu, and Gang Chen. DPTree:
Differential Indexing for Persistent Memory. Proceedings of the VLDB
Endowment, 13(4):421-434, 2019.



