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Abstract—Emerging file systems are built with KV stores
as the storage engine of metadata, leading to KV workloads
with unique characteristics such as a significant proportion of
single-key lookups, simpler scan operations, and locality on key
access. LSM-Tree based KV stores are widely used to store file
system metadata. However, these KV stores designed for general
purposes are unable to reach their full potential when serving as
the storage engine of file system metadata and face challenges
such as 1) limited write performance because of excessive disk
IOs and CPU resource consumption caused by key sorting and
outdated IO interface; 2) inefficient key searching caused by
unsuitable index structures. We propose PhatKV, a KV store
specifically tailored to function as file system metadata storage
on modern SSD. PhatKV proposes a new Piece Hash Index
to facilitate retrieving KV items via a two-level hash structure
with limited memory consumption by tactfully moving parts
of the index structures between SSD and memory. PhatKV
also eliminates the sorting overhead, such as disk IOs and
CPU resource utilization, by aggregating KV items of each
directory on SSD via a Three-stage Aggregation strategy, and
enhances the data IO performance by leveraging the new io uring
interface. Experimental results show that throughput of PhatKV
outperforms state-of-the-art KV stores by 1.2× to 7.9× on KV
operations. File systems using PhatKV achieve improvement on
throughput of metadata operations by 1.6× to 3.1×.

Index Terms—key-value store, file system, metadata, SSD

I. INTRODUCTION

File systems play a crucial role in managing data for various
applications. The metadata of a file system contains data
of the files’ attributes and the file system hierarchy. File
system metadata is vital for ensuring the overall performance
of file systems since metadata operations account for the
majority among all the file system operations [1]. Recent
works have proposed leveraging key-value (KV) stores as the
storage engine for file system metadata and built KV-based
file systems [1]–[6], due to the high performance, efficient in-
terface, and low consistency overhead of KV stores. With this
method, the directory hierarchy and file system metadata are
transformed into KV entries (i.e., ⟨pinode fname, stat⟩) [1]–
[3], [5], [6]. The KV operations performed on the file system
metadata present three unique characteristics: 1) Most KV
operations are single-key operations, and the proportion of
query is up to 90% in some workloads; 2) Range scans only
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need to return unsorted KV entries with the same pinode; 3)
KV items are accessed with directory locality, meaning that
keys with the same pinode are more likely to be accessed at
adjacent times.

LSM-Tree based KV stores such as LevelDB and RocksDB
are popular KV stores on SSD. These KV stores support
comprehensive types of KV operations and fast write pro-
cessing. Thus, LSM-Tree based KV stores are widely used
as the storage engine of metadata when building KV-based
file systems. However, existing LSM-Tree KV stores and their
optimized variants are mainly designed for general use without
considering the workload characteristics of metadata opera-
tions. There is still room for improvement in the efficiency of
KV operations and metadata operations by tailoring the KV
stores according to the file system metadata workloads in both
write and read.

LSM-Tree KV stores are not the best option for file systems
due to three restrictions when it comes to the access patterns
of file system metadata. First, they can’t achieve higher write
speed because of the sorting overhead of LSM-Tree. LSM-
Tree KV stores regularly read and write data at each level to
sort KV data on SSD. Both IO amplification and merging KV
data are incurred in the background compaction processes [7],
[8] causing excessive SSD IOs and CPU overhead. The
background compaction slows down the foreground processing
of KV requests. Moreover, existing LSM-Trees use outdated
POSIX-style synchronous IO interface, which further down-
grades the efficiency of IO and background data processing.
Second, the multi-level structure of LSM-Tree reduces the
effectiveness of key searching. Locating a key in LSM-Tree
can be complicated because of the multi-level organization
of SSTable and the complex index block parsing [9]. Ad-
ditionally, LSM-Tree is not directory-aware in two aspects:
1) The latency of accessing KV entries from a directory
varies greatly because KV entries from a directory may go to
different SSTables or even different levels. 2) All the metadata
of SSTables must be kept in memory to guarantee efficient key
searching, which results in memory overhead. Third, although
the file systems do not require the sorted results, LSM-Tree
incurs overhead for sorting the KV entries and returns a sorted
sequence of KV entries for a scan operation.

To address the limitations of the aforementioned KV stores,



we propose PhatKV, a tailored KV store designed especially
for building KV-based file systems with efficient metadata
management. PhatKV achieves this through three essential
designs. First, we design the Piece Hash Index to efficiently
index keys with restricted memory consumption. It is a two-
level hash index structure and allows efficient key retrieval
through two hash lookups, while selectively maintaining nec-
essary parts of the piece hash index in memory by leveraging
the directory locality. Second, we present a Three-stage Ag-
gregation strategy for managing data on disk to minimize the
disk IOs and CPU resource consumption while still supporting
the scan operations by aggregating KV items rather than
sorting them. Third, PhatKV leverages the new io uring [10]
interface to enhance disk IO performance and fully unleash
the capabilities of modern SSD.

The primary contributions of PhatKV are as follows:
• Piece Hash Index. We propose the new piece hash index

for the file system metadata. It enables more efficient
retrieval of KV items and lower memory footprint.

• Three-stage Aggregation. We present the three-stage
aggregation strategy to effectively manage file system
metadata on modern SSD. It aggregates KV items from
each directory instead of sorting all the KV items, which
reduces the SSD IO required to manage KV items on the
SSD.

• Asynchronous IO via io uring. We implement the ag-
gregation via asynchronous io uring interface. It further
enhances the efficiency of aggregation.

• We implement and evaluate PhatKV. The results demon-
strate that PhatKV’s throughput outperforms LevelDB
and RocksDB by 1.2× to 7.9×, respectively. Addition-
ally, it also achieves 1.2× to 1.5× higher throughput and
four times less memory footprint compared to KVell.
Moreover, file system using PhatKV achieves 1.6× to
3.1× improvements on metadata operations’ throughput.

II. BACKGROUND AND MOTIVATION

A. KV-based file systems

File systems are widely used to manage data in the form
of files and directories within a directory tree across various
scenarios. File systems store the metadata of files (directories
are considered as special files) and the directory tree structure
to facilitate file data retrieval. To achieve fast file access,
efficient access to file system metadata is critical. Key-value
(KV) stores are deployed as the storage engine of emerging
large-scale file systems for managing file system metadata
because of exceptional performance and scalability [1]–[6],
[11]. Integrating KV stores and building KV-based file systems
provides scalable and more efficient metadata services.

File system metadata operations are converted into KV oper-
ations when constructing a KV-based file system. The file sys-
tem metadata, i.e., file metadata and directory tree structure, is
then converted into KV pairs in the KV stores. The file system
information is commonly represented by ⟨pinode fname⟩,
in which the term ”pinode” denotes the inode number of the
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Fig. 1. Proportion of different KV operations. This figure illustrates the
distribution of various KV operations across different file system workloads.
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Fig. 2. Statistics of pinode access from WebProxy workload. The x-axis
represents each key access from file system operations. The y-axis displays
the corresponding pinode of the accessed keys.

parent directory of a particular file or directory [1]–[3], [5], [6].
Accessing a file with a given path is implemented by recursive
parsing of directories along the path. For example, locating
a file at ”/home/user/data” can be transferred into three get
operations for the KV stores: Get(0 home), Get(1 user), and
Get(2 data). The special format of KV pairs and the usage
scenario lead to KV workloads with distinctive characteristics
for KV stores under a file system:

First, single-key operations account for the largest propor-
tion of all KV operation calls, particularly the get operations.
As shown in Figure 1, the get operations constitute up to 90%
of all KV operations [12]. This is primarily due to the fact
that accessing a file requires recursively parsing the file’s path
by conducting key searches within the KV stores. Moreover,
creating a new file leads to the insertion of a new KV item to
the KV store.

Second, when accessing KV entries, single-key operations
from the file system exhibit locality, which we refer to as
”directory locality”. Figure 2 illustrates the pinode of accessed
key from a synthetic workload from filebench. We can observe
that: (1) some pinodes of KV entries are always accessed
during the test as they are the root of the sub-directories; (2)
some pinodes of accessed KV entries remain unchanged for a
short period before shifting to another pinode in the subsequent
period. The locality arises because file system workloads
typically operate within specific working directories. Thus, KV
entries associated with the same pinode are more likely to be
accessed in the KV store over a period of time, resulting in
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Fig. 3. Analysis of write operations. (a) shows the variation of foreground
throughput and background write amplification under each 1 million insert
operations. (b) presents the latency breakdown of compaction for KV merge
and data IO.

locality on a range of KV entries.
Third, the file system does not require the KV store to sort

all KV pairs. Since KV entries in different directories are
isolated, sorting the KV entries from different directories is
worthless. Furthermore, the scan operation required by the file
system differs from a regular scan. The file system retrieves
all KV entries associated with a specified pinode, without
regard to their sequence. In contrast, KV stores typically yield
a sorted sequence of KV pairs within a user-defined key range.
KV stores for file systems can sacrifice the total order of KV
entries for a better performance.

B. LSM-Tree

LSM-Tree [13] based KV stores, such as LevelDB1 and
RocksDB2, are designed for fast SSD and are widely used
as the backbones of various storage systems [14]. Because
LSM KV stores support extensive KV operations including
Put, Get, and Scan, and offer superior write performance on
SSD, developers building KV-based file systems choose to use
them as the metadata storage engine. The basic structure of
LSM-Tree KV stores includes an in-memory component called
Memtable, and multiple on-disk components called SSTables.
The SSTables are organized in a multi-level structure. In each
level except for level 0, the key range of each SSTable is not
overlapped. The total size of level N + 1 (LN+1) is r times
larger than that of level N (LN ), where r is typically set to
10. New KV items are inserted to the Memtable first and then
moved to the higher level at the granularity of the SSTable by
the background compaction process. Locating a key requires
searching level by level, starting from the Memtable, until the
target key is found or the last level on SSD is reached.

C. Motivation

LSM KV stores are designed for general use cases where
strict sorting of KV entries is indispensable. However, when
combined with the specific scenario for file system metadata
storage, the design choice of LSM-Tree is not always optimal
and limits the write and read performance, respectively.

Overhead of sorting limits the write performance. LSM-
Tree must sort the KV entries on the SSD to guarantee

1https://github.com/google/leveldb
2https://github.com/facebook/rocksdb
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Fig. 4. Analysis of read operations. (a) shows the latency of locating a key
in LevelDB, in-memory hash table, and in-memory B+Tree. (b) shows the
CDF of the latency for accessing KV entries from a single directory.

the strict order of keys at each level. The KV entries are
sorted and merged by the background compaction threads.
Periodically, compaction threads select an SSTable at LN and
one or more SSTables at LN+1 that have the overlapped key
range with the SSTable at LN , and read them into memory,
merge them to construct new SSTables, and finally write
the new SSTables to LN+1. The compaction process incurs
a huge number of data writes that are significantly larger
than the user’s writes (i.e., write amplification), reducing the
efficiency of foreground operations. As shown in Figure 3(a),
we evaluate LevelDB by loading 160 million KV entries and
recording the write throughput and write amplification every
1 million put operations. The write amplification of LSM-
Tree increases with the size of the inserted data, leading to a
downgraded write performance. The CPU overhead for sorting
KV entries in memory is also incurred during the compaction
operation. We record the time spent on the KV entries merging
during the compaction process as shown in Figure 3(b). The
merge process accounts for 22% of the total compaction
time. Additionally, existing LSM-Tree KV stores typically
access the underlying storage device via a POSIX synchronous
interface. Because of the overhead of an inefficient IO stack,
redundant data copy, and time wasted waiting for IO requests
to complete, KV stores with the outdated IO interface are
unable to effectively exploit modern fast storage devices.

Multi-level tree structure is not optimal for key search-
ing and scan. The structure of LSM-Tree is not optimal
for accessing KV entries of file system metadata. First, the
multi-level organization of LSM-Tree increases the search
latency, while the underlying structure of SSTables further
slows down key searching. Figure 4(a) shows the average
time spent on locating SSTable files and locating keys in
SSTables in LevelDB. We compare the latency of key locating
in LevelDB with that of an in-memory hash table and that of
an in-memory B+Tree. The time for locating a key in LevelDB
is 9.7× and 4.3× longer than that of the hash table and
B+Tree, respectively. Second, the LSM-Tree is not directory-
aware, which means KV entries from a directory may scatter
across different SSTables or levels, leading to varied access
latency when accessing KV entries in a directory. We collect
the latency of accessing KV entries from the same directory
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via LevelDB. The size of a directory is set to 20, which means
there are 20 KV entries for each pinode. We randomly choose
a directory and read all the KV entries belong to that directory
(i.e., have the same pinode). Figure 4(b) shows the cumulative
distribution function (CDF) of the latency. The large variation
in latency indicates that the LSM-Tree is unaware of the access
from a directory. Additionally, to guarantee the efficiency of
key searching, all the index blocks of SSTables must be kept
in memory, which also increases the memory overhead. Third,
to gather KV entries from a directory, the scan operations
of LSM-Tree based KV stores must merge and sort related
SSTables and data blocks to obtain a sorted KV sequence,
which adds more sorting overhead.

III. DESIGN

In this section, we present PhatKV, a KV store designed
to work as the metadata storage engine for building KV-
based file systems that provide efficient metadata services
on modern SSDs. PhatKV aims to address the challenges
identified in Section II-C: 1) the sorting overhead from LSM-
Tree compaction; 2) the inefficient key searching of LSM-Tree
structure. The design of PhatKV follows three principles:

• leveraging a hash-based index and the directory locality
to ensure fast queries of frequently accessed KV items;

• aggregating KV entries with the same pinode instead of
sorting all the KV items;

• utilizing modern asynchronous storage API to unleash the
performance of modern SSDs.

Figure 5 depicts the overall structure of PhatKV. Each file
system metadata corresponds to a KV item in PhatKV. The
main components of PhatKV include 1) Piece Hash Index: a
two-level hash index that stores the KV index entries. Each
KV index entry consists of the key hash and value address of
the corresponding KV item on the SSD; 2) Aggregated Data
Blocks: data blocks that store KV items on the SSD with
the same pinode; 3) Aggregation Buffer: an in-memory buffer
that proactively aggregates KV items with the same pinode to
facilitate further aggregation; 4) Consistency Log: a log that

records modifications made to in-memory structures to ensure
their consistency.

A. Directory-aware Piece Hash Index

While typical in-memory hash tables are more efficient than
both LSM-Tree and B+Tree, storing all of the KV index entries
by hash tables makes it difficult to manage scan operations and
uses too much memory when working with large datasets. We
propose a new structure called the Piece Hash Index, which
is designed specifically for managing file system metadata.

1) Two-level hash structure: The piece hash index is a
directory-aware two-level hash index, as depicted in Figure 5.
It consists of a high-level Pinode Hash (p-hash) and multiple
low-level File Name Hash (f-hash) structures. Each f-hash
stores the KV index entries with the same pinode. That means
that the metadata of files under a directory is handled by
the corresponding f-hash structure. The p-hash organizes all
the f-hash structures and records the mapping between pinode
numbers and the corresponding f-hash structures.

The high-level p-hash is an in-memory hash table. We select
the CLHT (Cache-Line Hash Table) [15] as the implementa-
tion of the p-hash, because it is a representative and fast in-
memory hash table. The p-hash is placed in memory for two
reasons: 1) directory operations (such as statdir, mkdir, and
rmdir) are not common in real file system workloads [1], and
thus the p-hash is less likely to be modified; 2) the number
of directories is typically smaller than that of files, so the
size of p-hash is relatively small. Our experimental results
indicate that the p-hash consumes only 256 MB of memory
for 8 million directories.

Each f-hash is associated with a pinode number and stores
KV index entries, which consist of an 8-byte hash value for
the fname and an 8-byte descriptor for the value address on
the SSD (page id and page offset).

2) Directory locality based f-cache: Similar to a typical
hash table, storing all the f-hash structures in memory also
leads to an excessive memory footprint and recovery overhead.
Note that KV entries with the same pinode are accessed at
adjacent times, according to the directory locality. Thus, we
take advantage of directory locality by just keeping necessary
f-hash structures in memory. When a directory is accessed as
the current working directory for the first time, all the KV
index entries for files in that directory can be loaded into
memory by moving the corresponding f-hash into memory.
When a directory is no longer accessed, we can remove all
the entries by moving the corresponding f-hash from memory
to SSD, thus saving memory. As shown in Figure 5, we
introduce the f-cache, which uses an LRU list to manage the
in-memory f-hash structures. If the memory usage of the f-
cache exceeds its pre-defined capacity (i.e., 1 GB in our default
configuration), certain f-hash structures will be selected from
f-cache and evicted to the underlying SSD.

Because all of the KV index entries are intermixed, a typical
hash index cannot have fine-grained control on maintaining the
necessary f-hash in memory. However, by combining the p-
hash and f-hash structures, the piece hash index achieves this
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level of fine-grained control. The piece hash index cooper-
ates with the f-cache to achieve efficient key searching with
minimal memory overhead.

3) Preventing serialization overhead: The detailed struc-
ture of the f-hash is illustrated in Figure 6. Each f-hash
consists of multiple buckets, each of which has a size equal
to that of a cacheline (i.e., 64 bytes). A bucket contains 4 KV
index entries. The incorporation of f-cache may lead to two
possible locations for an f-hash, thereby resulting in overhead
for compacting the f-hash to an SSD page (serialization) or
rebuilding it from data stored in SSD pages (de-serialization).
These serialization overheads increase the latency of managing
f-hash in the f-cache, i.e., loading and eviction. To eliminate
the serialization overhead, we propose three f-hash design
principles. First, the f-hash is constructed on a continuous
memory space, which is divided into a normal area and an
overflow area. The normal area comprises buckets that are
accessed by the hash value of the keys. Second, a new overflow
bucket that is allocated sequentially from the overflow area is
catenated to handle the overflow of f-hash buckets. Third, the
f-hash utilizes offsets rather than memory addresses to indicate
an overflow bucket. By employing these three designs, the
f-hash can be seamlessly moved between SSD and memory
without incurring serialization overhead.

4) Adaption to directory with different sizes: Since the
SSD’s default access unit is 4 KB, any reading or writing
of an f-hash smaller than 4 KB will waste SSD IO. To avoid
this, we suggest an adaptive combination for small f-hash. We
define that the size of f-hash is aligned to 64 bytes, and their
sizes double each time they expand. When an f-hash smaller
than 4 KB is selected to be evicted from the f-cache, we will
combine several f-hash structures into a 4 KB block. Two
principles guide the choice of the f-hash for the combination:
1) they are selected to be evicted; 2) the f-hash structures
have adjacent pinode numbers. Since nearby pinode numbers
are more likely to be accessed, the f-hash structures with those
pinode numbers are combined first. When we load an f-hash
into memory, we can save SSD IO by using the adaptive
combination to pre-fetch the f-hash structures in the same
SSD page. On the other hand, accessing entries in a large
f-hash may waste IO because the entire f-hash would need to
be read into memory. To save undesired reading, we suggest
partial reading. An f-hash larger than 4 KB will be divided
into multiple 4 KB pages. The target key can be first mapped
to a 4 KB page by its hash value. Then, rather than reading

the whole f-hash, the partial read strategy allows only loading
that page into memory.

B. Light-weight Three-stage Aggregation

For file system metadata, keeping KV items completely
sorted on SSD (like LSM-Tree) is not the ideal option.
However, the piece hash index alone cannot support the
scan operations effectively. Since scan operations from file
systems do not require the sorting of the result, PhatKV
proposes grouping KV items based on the pinode whenever
feasible. This approach reduces the overhead of compaction
and improves the efficiency of scan operations.

The fundamental unit for managing KV items in PhatKV
is the aggregated data block, which stores KV items with the
same pinode. The aggregated data block comprises KV data
and fingerprint (FP) data as shown in Figure 5. The FP data
contains 2-byte fingerprint values for each KV item within the
data block. The maximum size of a data block is limited to 4
KB, equivalent to the size of an SSD page. Smaller blocks can
be combined to fill an SSD page. To support scan operations,
each pinode has a data block set, an in-memory structure that
records a list of data block addresses associated with that
pinode. Next, We propose a three-stage aggregation strategy
for PhatKV, including memory aggregation, disk aggregation,
and deep aggregation, to efficiently manage the KV items on
SSD.

Memory Aggregation. In this stage, we utilize an in-
memory aggregation buffer to perform a preliminary aggre-
gation for KV items according to their pinode numbers, as
shown in Figure 7(a). For each pinode, the aggregation buffer
maintains a skiplist, referred to as a pinode set. All pinode
sets are sorted in descending order of their sizes. Once the
total size of KV items in the aggregation buffer (64MB) or
the size of a pinode set exceeds the threshold (4KB), the
background aggregation threads are triggered. Aggregation
threads select the pinode set with the largest size from the
aggregation buffer, construct data blocks, and write these data
blocks to the SSD. Whenever a new data block is persisted, the
associated KV index entries for these KV items are inserted
to the corresponding f-hash. The memory aggregation reserves
the pinode with fewer entries in memory for aggregation in
the future. This reduces the number of data blocks of a pinode,
and thus improves the scan performance.

Disk Aggregation. A data block is added to a pinode
set each time after the memory aggregation, and scattered
data blocks of a pinode downgrade the efficiency of the
scan operation. The disk aggregation stage aims to aggregate
data on the SSD to reduce the number of SSD pages that
need to be read during a scan operation. Data blocks smaller
than 2 KB are regarded as scattered blocks. The background
aggregation thread is triggered to collect data from various
SSD pages when the number of scattered blocks exceeds
a specific threshold, as shown in Figure 7(b). During disk
aggregation, all scattered blocks are read and combined into
larger ones. While the compaction merges and sorts all KV
items from various data blocks, the disk aggregation simply
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gathers scattered blocks from different pages, consolidates
them into continuous pages, and then writes those pages.
This approach effectively reduces the CPU overhead brought
by merging and sorting. Upon flushing the newly aggregated
data block, previous data blocks are marked as invalid and
subsequently reclaimed.

Deep Aggregation. Since the aggregation does not merge
and sort KV entries within a data block, it leaves obsolete data
behind, wasting storage space. The deep aggregation stage is
subsequently triggered to eliminate invalid data from those
data blocks. To keep track of each pinode, we record the ratio
of invalid data of each pinode. When this ratio exceeds the
threshold, deep aggregation is activated for all data blocks
associated with that pinode. PhatKV leverages an FP-based
merge operation in deep aggregation to prevent sorting the KV
entries in the data blocks as shown in Figure 7(c). The deep
aggregation follows four steps. First, it reads all the FP data
from all the data blocks and identifies KV items with matching
fingerprints. Second, the KV entries with the same FP values
are extracted from the data blocks and compared with each
other. The older KV entries that are updated by a newer version
or deleted entries are removed. Third, valid KV items without
fingerprint conflicts can be moved in batch to a new data block,
which reduces the CPU overhead of recalculating fingerprints.
Fourth, after eliminating the invalid data, the new data block
is written back to new SSD pages.

By leveraging the memory aggregation, PhatKV reduces
the write amplification for collecting KV entries with the
same pinode on SSD. With the disk aggregation and deep
aggregation, PhatKV can further cluster KV data of each
pinode and remove invalid data with lower CPU overhead.

C. Consistency

To ensure data consistency of in-memory structures, such as
p-hash, f-hash, and the aggregation buffer, PhatKV maintains
a consistency log on the SSD to record modifications of these
structures. The consistency log records the newly inserted KV
items (resembles the WAL in an LSM-Tree) and the modifi-
cations on the in-memory structures. KV data is considered as
consistent once it has been persisted to the consistency log, and
can be recovered when the system restarts. The consistency of
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Fig. 8. Comparison of IO framework. Traditional LSM-Tree KV stores
leverage POSIX-style synchronous IOs and suffer from stall for waiting the
completion of IO. PhatKV uses the new efficient io uring and can continue
processing when the kernel is processing the IO requests.

multiple updates is guaranteed by upper layer transactions,
such as the TransactionDB of RocksDB.

To minimize disk IO, log writes are done in batch whenever
possible. For instance, when inserting a new key that requires
creating a new f-hash entry, both the insertion of the KV
item and the addition operation of the f-hash are recorded
together in the consistency log. Similarly, modifications of
all f-hash structures during the aggregation process are also
persistently recorded in batches. Invalid data occurs when
the newer modifications overlap the older ones. To eliminate
invalid data in the consistency log, we do log refresh to
invalidate the current log and create a new one by persisting
all in-memory structures.

D. Asynchronous Aggregation Framework

The advent of modern SSDs with high throughput and
low latency has shifted the bottleneck of KV stores from
sluggish IO to the overhead of the software stack. Existing
LSM-Tree KV stores leverage POSIX-style synchronous IO
interface and incur two types of overheads: 1) redundant data



copy: the data is copied between user space and kernel space;
2) synchronous overhead: working threads must wait for the
completion of IO requests, which consumes CPU time. To take
full advantage of the capabilities of modern SSDs, we leverage
the asynchronous io uring [10] interface to access data on
the SSD. The io uring is a standard Linux asynchronous
IO interface. It leverages the work queue and completion
queue, a pair of circular buffers that are shared by user-space
applications and the Linux kernel, to asynchronously process
IO requests. The io uring interface has higher performance
than the Linux AIO interface, and is more program-friendly
than the SPDK library.

Based on the io uring interface, we design the asynchronous
framework for the aggregation, as shown in Figure 8. Specifi-
cally, a 4 KB buffer is used for storing KV entries generated by
the aggregation. Each time the buffer is filled, it will be sub-
mitted to the work queue of io uring during the aggregation
process. After that, we immediately resume the aggregation
without having to wait for the IO requests to complete. Finally,
upon the completion of processing, the aggregation thread will
check the pending IO requests and make sure that all pending
IOs have been finished. Therefore, SSD IO and calculation
overlap in the aggregation of PhatKV, enhancing the efficiency
of aggregation.

IV. DISCUSSION

Usability for other storage devices. PhatKV is designed
for fast block storage devices. The piece hash index balances
the large memory footprint of storing all the KV index entries
with an in-memory hash table and the low efficiency of storing
all the KV index entries with an on-disk hash table. The three-
stage aggregation strategy reduces the overhead of arranging
KV data on disk, where fine-grained data modifications are
expensive. The asynchronous IO framework further enhances
the utilization of fast SSD. For HDD, the piece hash index
and three-stage aggregation are still effective, while the asyn-
chronous IO is meaningless. For NVM, the byte-addressability
makes it easy to achieve fine-grained data access. Thus, it is
better to explore the performance of NVM by designing new
index structures and data management strategies.

File system metadata operations with PhatKV. Metadata
operations are transferred into KV operations of PhatKV by
the file system. Locating a file or directory is conducted by
recursively parsing each directory along the path via Get of
PhatKV. Creating a file or directory will first locate the parent
directory through the process of query. Then, a new entry with
the new file is inserted. If the pinode is not found in the p-
hash, a new f-hash will be constructed. If a file is deleted, the
corresponding KV entry is also deleted. In PhatKV, deleting
a key leads to inserting the same key with a tombstone as the
value. It will be finally removed from PhatKV by the deep
aggregation. Directory read is processed by fetching all the
data blocks of a pinode via the in-memory data block set. After
that, KV entries in the data blocks are parsed and redundant
entries will be checked to find out invalid entries.

Recovery. PhatKV recovers from a system crash by recon-
structing the in-memory data structures via the consistency
log. PhatKV replays all the modifications recorded in the
consistency log. The more modifications in the consistency
log lead to longer time for rebuilding the in-memory data
structures. Thus, the time for recovery is decided by two
factors: (1) the interval of log refresh; and (2) the intensity
of update operations.

V. EVALUATION

In this section, we conduct experiments to evaluate the
performance of PhatKV and compare it with state-of-the-
art KV stores. We evaluate the fundamental KV operation
performance by the micro-benchmark, and also analyze the
performance in more depth by collecting detailed metrics in
section V-C. Then, we present the results of widely used YCSB
benchmarks in section V-D. Next, we integrate these KV
stores into a file system and show how PhatKV improves the
efficiency of file system metadata operations in section V-E.
Finally, we discuss on the impact of f-cache size, memory
overhead, and improvement of the IO interface in section V-F.

A. Environment

The evaluations are carried out on a server using two Intel
Xeon Gold 5218(R) processors. The server has 64 GB DRAM
and 480 GB Intel Optane 900P series SSD (Random Read:
540 KOPS, Random Write: 121 KOPS, Sequential Read: 2240
MB/s, Sequential Write: 1910 MB/s). The server operates on
Ubuntu version 20.04, running kernel version 5.15.

B. Comparison and setup

We compare PhatKV with two LSM-Tree KV stores, Lev-
elDB and RocksDB, and an in-place-update KV store, i.e.,
KVell.

LevelDB and RocksDB. The MemTable size and SSTable
size are both configured to be 64 MB, with a block cache
capacity of 1 GB. The bloom filter is enabled with 10 bits/key.
All the SSTable files are allowed to be opened, and thus all
the index blocks of SSTables are cached in memory. Although
this configuration increases memory usage, it enhances search
performance. Additionally, we optimize RocksDB by setting
the maximum number of MemTable to 4 and the number of
background threads to 8.

KVell. KVell is a KV store designed for modern SSD.
It stores KV entries on SSD without sorting to eliminate
the compaction overhead of LSM-Tree and manages all the
KV entries with an in-memory B+Tree. KVell processes re-
quests asynchronously via the pending request list. Foreground
threads put KV requests into the request lists and wait for the
work threads to process them. We configure KVell using the
default settings provided by their open-sourced code, including
an IO queue depth of 16 and a pending requests list size of 256.
Moreover, we allocate a page cache size of 1 GB, matching
the block cache size used by LevelDB and RocksDB.

PhatKV. We configure PhatKV according to RocksDB.
The f-cache size is configured to be 1 GB, and the number
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Fig. 9. Throughput of micro-benchmarks. Figure(a)-(d) show the throughput of LevelDB, RocksDB, and PhatKV under varied numbers of threads.
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Fig. 10. Detailed analysis of put operations. Figure(a) shows the write
amplification of loading 160M KV entries. Figure(b) shows the latency
breakdown of PhatKV’s background operations.

of aggregation threads is set to 4, which provides sufficient
resources for achieving optimal performance. We also im-
plement PhatKV-async, where KV requests are put into a
request queue and asynchronously processed by other work
threads. Compared to synchronously processing KV requests
via foreground threads (LevelDB and RocksDB), the asyn-
chronous implementation achieves stable throughput with a
varied number of work threads. So, we compare KVell and
PhatKV separately for fairness.

C. Micro-benchmark

We first evaluate the throughput of three representative
types of KV operations, i.e., Put, Get, and Scan, using a
micro-benchmark. First, we insert 160 million KV entries into
each KV store, followed by conducting either 20 million get
operations or 1 million scan operations. The workload’s keys
consist of an 8-byte pinode and an 8-byte hash value, while
the value size is set to 128 bytes, equivalent to the size of the
file stat. Furthermore, the number of keys sharing the same
pinode is set to 20, approximately equal to the number of
files typically in a directory.

1) Put: Figure 9(a) illustrates the put throughput with vary-
ing numbers of threads. PhatKV attains the highest throughput
under 8 threads, surpassing RocksDB and LevelDB by a
factor of 2.5× and 7.9×, respectively. Due to its three-stage
aggregation, PhatKV reduces write amplification. Addition-
ally, PhatKV achieves better performance when utilizing only
4 background aggregation threads compared to RocksDB.
This highlights how the aggregation in PhatKV contributes to
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Fig. 11. CDF of the get operations’ latency. This figure shows the latency
of accessing KV entries with the same pinode in PhatKV.

reducing CPU resource consumption. Furthermore, the usage
of io uring for asynchronous IO enhances the efficiency of
aggregations, avoiding delays of the foreground put operations
due to untimely aggregation buffer flushes. Because LevelDB
only has one thread for background compaction, which be-
comes the bottleneck for foreground operations, it has the
lowest put throughput.

Analysis of aggregation. To analyze the effect of the
aggregation on reducing write amplification, we record the
write amplification of each KV store while loading 160 million
KV entries. As shown in Figure 10(a), the write amplifications
for LevelDB and RocksDB are 10.3 and 9.1, respectively.
On the contrary, PhatKV has a write amplification of only
2.1, which is 0.2× lower than LevelDB and RocksDB. The
write amplification comes from two aspects: 1) writing data
blocks by the aggregation processes; and 2) persisting the
updated f-hash structures after an aggregation operation. We
further break down the time spent by the aggregation threads
of PhatKV as shown in Figure 10(b). The calculation time
for PhatKV is 0.18× lower than LevelDB because PhatKV
does not need to merge and sort all the KV entries as the
compaction does. Instead, PhatKV only merges a small portion
of KV entries in the deep aggregation stage by comparing the
fingerprints of KV entries in the data blocks. Thus, the FP
comparison accounts for 64.4% of the total time for all the
calculations of PhatKV’s aggregation.

2) Get: We analyze the performance of the get opera-
tion under two workload distributions: uniform workload and
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skewed workload (zipfian). In the case of the uniform dis-
tribution, as shown in Figure 9(b), PhatKV only outperforms
LevelDB by 30%. The overhead of loading and evicting f-
hash structures from and to SSD is what we believe to be
the cause of the slight improvement, as it lessens the benefit
of the piece hash index. However, since the micro-benchmark
generates requests randomly without any locality, this scenario
can be considered as the worst-case for PhatKV. On the other
hand, under the zipfian distribution, as shown in Figure 9(c),
PhatKV outperforms LevelDB and RocksDB by 2.0× and
2.5×, respectively. In the skewed distribution, key lookup
through f-hash is more efficient than using the index block
of the LSM-Tree because of the increased hit ratio of the f-
cache. The advantage of PhatKV becomes more pronounced
when the LSM-Tree is unable to cache all its index blocks
in memory. RocksDB performs worse than LevelDB since the
increased number of memtables also increases the latency of
searching a key.

Access latency under a directory. We further examine the
latency of searching KV entries from the same directories to
show how the piece hash index accelerates file access. As
shown in Figure 11, 75% of the get requests can be served in
2 µs to 4 µs by leveraging the piece hash index and f-cache.
For the other requests, the increased latency comes from 1)
loading f-hash structures from SSD because of the miss of
f-cache; and 2) loading data blocks from SSD because of the
miss of data block cache.

3) Scan: PhatKV achieves 1.6× and 2.0× higher scan
throughput than LevelDB and RocksDB, as shown in Fig-
ure 9(d). The reason for the improvement is that PhatKV can
co-locate KV entries of a directory thanks to aggregation,
which enables it to retrieve all the KV entries by directly
reading all the target SSD pages. In comparison, LSM-Tree
is less efficient than PhatKV because it needs to merge and
sort the results of the data blocks from multiple SSTables.
Moreover, PhatKV can achieve greater improvement than
LSM-Tree as the directory size increases.

4) Comparison with KVell: Figure 12 compares the
throughput of PhatKV and KVell for all the three types
of KV operations. PhatKV’s put throughput is 1.5× higher
than KVell’s because PhatKV incurs fewer random writes.
As depicted in Figure 10(a), KVell has 0.86× lower write
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Fig. 13. YCSB. This figure shows the throughput of KV stores normalized
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write. All the workloads are under Zipfian distribution. The number on the
bars of LevelDB is its real throughput.

amplification than PhatKV because KVell doesn’t move KV
entries on SSD. This eliminates additional SSD IOs but incurs
overhead for future scan operations. PhatKV has a 0.9×
lower throughput compared to KVell under a uniform get
workload because KVell stores the entire B+Tree in memory,
whereas PhatKV’s swapping in and out the f-hash causes
a certain number of SSD IOs. However, the total memory
occupied by KVell’s B+Tree after loading 160 million entries
is approximately 4.3 GB, which is four times larger than the f-
cache. PhatKV achieves a 1.2× higher throughput than KVell
under skewed workloads because of the superior efficiency of
the piece hash index over the B+Tree. Finally, KVell shows the
lowest scan performance, which is 0.2× lower than PhatKV,
among the four KV stores. We attribute this to the unordered
placement of KV entries in KVell. This unordered placement
causes KV entries with the same pinode to scatter across slab
files on SSD. Although B+Tree’s scan operations are efficient,
each retrieval of the KV data according to the address stored
in B+Tree requires a random read on SSD. As a result, the
efficiency of KVell is reduced by excessive random reads.

D. YCSB

YCSB [16] is a widely used macro-benchmark suite de-
livered by Yahoo!. We evaluate the performance of all KV
stores under the YCSB workloads with the same initializa-
tion progress as described in Section V-C. We consider the
three workloads with different read/write ratios (i.e., A, B,
C) with the limitation of the KVell and the workloads for
scan (i.e., E). We use 16 threads in this part to present the
best performance. We show the throughputs normalized to
LevelDB in Figure 13, and the results are consistent with those
in the micro-benchmark. Because of the efficient piece hash
index and light-weight aggregation strategy, PhatKV performs
best in all workloads and outperforms LevelDB 6.6×, 1.8×,
2.2×, and 1.3× in workload A, B, C, and E, respectively. In
workload A, RocksDB outperforms the KVell 1.7× because
the new updates are handled by the Memtable while KVell
must update the B+Tree structure. KVell achieves the worst
performance in Workload E because of its inefficient scan
operation.
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E. File system metadata operations

We further compare the efficiency of typical metadata
operations, such as file creation, file querying, file deletion,
and listing directories, on the file system using different KV
stores as the metadata storage engines. We select Tablefs [2],
an open-source file system built on top of KV store, as our
testbed. We construct two types of workloads for different
metadata operations: 1) directory workload for the mkdir and
listdir operations, consisting of a total of 50 million directories
with a maximum depth of 19; 2) file workload for file creation,
file querying, and file deletion, comprising 10,000 directories
and 50 million files with a maximum depth of 12. The results
are presented in Figure 14.

PhatKV outperforms LevelDB, RocksDB, and KVell on the
mkdir and file creation operations with 3.1×, 2.1×, and 1.6×
higher throughput, respectively. The mkdir and file creation
operations involve the recursive parsing of directory paths,
which involves both get and put operations. PhatKV performs
faster put operations due to the three-stage aggregation, and
also achieves faster queries through the piece hash index.
Moreover, PhatKV maintains a high cache hit ratio due to the
directory locality of metadata workloads. PhatKV outperforms
LevelDB and RocksDB on the file query operations with 2.6×
and 2.0× higher throughput, respectively. Since file query
operations only involve the get operation, PhatKV achieves
higher performance with a more efficient piece hash index.
KVell performs better than LevelDB and RocksDB because
searching in a B+Tree is more efficient than the index block
of LSM-Tree. However, PhatKV outperforms KVell because
the hash index of PhatKV is even more efficient than B+Tree
searching. The file deletion operation is processed by first
locating the target files and then deleting the KV entries.
This is similar to the file creation operation because delet-
ing a KV entry involves putting a tombstone marker. The
tombstone marker and obsolete KV entries are removed by
the compaction or aggregation threads later. Finally, PhatKV
achieves 3.1×, 2.1×, and 2.6× higher throughput on the listdir
operation. The efficiency of listdir operations is determined by
both get operation and scan operation. The aggregation enables
PhatKV to achieve a more efficient scan by grouping the KV
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entries of a directory together.

F. Detail Analysis

In this section, we first discuss the impact of the f-cache size
on the performance of get operations. Then, we compare the
memory overhead of the mentioned four KV stores. Finally,
we present the improvement of PhatKV by using the new IO
interface.

The size of f-cache. The f-cache of PhatKV manages
the in-memory f-hash structures and evicts f-hash structures
to SSD to limit the memory footprint when necessary. To
investigate how the size of f-cache affects the performance
of PhatKV’s get operations, we run a micro-benchmark with
different f-cache sizes varying from 64 MB to 2GB. Figure 15
shows the results. The size of f-cache has a significant impact
on the get operation performance under a uniform workload
because a larger f-cache can keep more f-hash structures in
memory, reducing SSD IOs for evicting and loading f-hash. On
the contrary, under the skewed workload, the get operation’s
performance remains stable against the variation of f-cache
sizes because the smallest f-cache is sufficient to keep all the
accessed f-hash structures in memory. Additionally, optimizing
the efficiency of the cache management algorithm can raise the
f-cache’s hit ratio. This can reduce SSD IOs for transferring
f-hash between SSD and memory, and improve the efficiency
of get operation. We leave the issues of optimizing the cache
algorithm according to the file system workloads as our future
work.

Memory overhead. The two-level piece hash index accel-
erates the KV searching by leveraging in-memory hash index.



Figure 16 shows the memory footprint of the four KV stores
after loading 160 million KV entries. KVell consumes the
most memory resources because of its adoption of in-memory
B+Tree. The memory used by KVell is 3.9× larger than that
in PhatKV. PhatKV consumes 2.3× and 4.2× more memory
than LevelDB and RocksDB. PhatKV can easily adjust the
cache size according to the workload characteristics. However,
LSM-Tree KV stores may have worse search efficiency if they
cannot keep all the SSTable metadata in memory.

IO interface. PhatKV improves SSD write efficiency by
leveraging the asynchronous io uring interface. We run the
micro-benchmark to evaluate PhatKV by loading 160 mil-
lion entries under the traditional POSIX interface and the
io uring interface. As demonstrated in Figure 17, PhatKV with
the io uring interface improves 1.2× put throughput. This
improvement comes from 1) more efficient handling of IO
requests by io uring; 2) overlapping IO with processing by
asynchronous interface.

VI. RELATED WORKS

1) File systems with KV store: KV stores are selected as
the storage engine of file system metadata when building new
fast and scalable file systems. Compared to traditional file
systems, KV stores are deployed for the local file system
to achieve more efficient IOs for small metadata. Tablefs [2]
provides efficient metadata operations and small file access by
leveraging LevelDB to consolidate the random IO caused by
metadata updates and small files. KVFS [17] optimizes LSM-
Tree by reducing write amplification via VT-Tree and builds
the new KVFS based on it. betrfs [11] leverages TokuDB in
a different way where the full paths of files are used as the
keys. KEVIN [6] incorporates the new KVSSD and LSM-Tree
to manage the file system metadata. For the distributed file
systems, KV stores are typically deployed as an independent
service such as metadata servers. IndexFS [3] is the distributed
version of Tablefs and also takes advantage of LevelDB to
manage its metadata in each metadata server. LocoFS [4]
manages the metadata by LocoMeta [18] that is built based
on Kyoto Cabinet. Techtonic [5] builds its metadata layer on
the distributed ZippyDB, whose local storage is RocksDB.
InfiniFS [1] stores its metadata on the underlying RocksDB.
JuiceFS [19] is an open-sourced distributed file system that
supports several metadata backends including Redis and TiKV.
The metadata performance is however limited due to the fact
that existing file systems use KV stores designed for general
use cases and consider the file system level rather than the KV
store.

2) LSM-Tree KV stores: LSM-Tree based KV stores, such
as LevelDB and RocksDB, are optimized for fast write
processing and are deployed as the backbones of various
applications. Various optimizations are proposed for LSM-
Tree to attain better write or read performance.

Optimizing compaction strategy. PebblesDB [20] adopts
a tiering-style compaction strategy and leverages the ”guard”
to guarantee the partially sorted levels. SpliniterDB [21]
combines LSM-Tree and Bϵ-Tree to build the new SPTϵ-tree.

EvenDB [22] leverages the spatial-locality of KV workloads.
The LSM-Tree compaction is accelerated in literature [23] by
offloading it to FPGA hardware. WipDB [24] uses an approx-
imately sorted list via in-place updates. BlockDB [25] accel-
erates the compaction by adopting a block-style compaction
strategy. Pacman [26] optimizes the compaction according to
the characteristics of persistent memory.

KV separation. Another way of reducing write ampli-
fication is KV separation strategy [7], [27], [28]. Among
these works, DiffKV [7] handles KV with different sizes
independently and proposes a compaction-triggered merge
operation for efficiently managing the separated KV data.

Hybrid storage. With the emerging high-speed storage
devices such as persistent memory or NVMe SSD, there are
also considerable works aiming to optimize LSM-Tree with
heterogeneous storage hierarchy. [29] accelerates RocksDB
by using PM cache. SpanDB [30], MatrixKV [31], and PM-
Blade [32] transfer the higher levels of LSM-Tree into faster
devices to accelerate data writing. [33] stores the KV data on
NVM with high access frequency.

Read optimization. Several works aim to accelerate key
searching in LSM-Tree. AC-Key [9] proposes a new cache
management algorithm. Bourbon [34] integrates a learned
index to accelerate locating a key on SSD. Chunky [35]
proposes a new global cuckoo filter to map each data entry to
an auxiliary address corresponding to its location. REMIX [36]
accelerates the LSM-Tee Scan by building a globally sorted
view of KV data spanning multiple table files.

3) In-place Update KV stores: Modern SSDs, such as
NVMe or Optane SSD, have shifted the bottleneck in sys-
tem performance from SSD to the software overhead, which
has prompted the development of in-place-update KV stores.
LeanStore [37] leverages the swizzling pointer and low-
overhead replacement strategy to efficiently manage KV data
on SSD. KVell [8] eliminates sorting on SSD and indexes all
the KV data on SSD by an in-memory B+Trees. Treeline [38]
accelerates the efficiency of KV access by key cache. It
reduces the memory overhead of in-memory B+Tree by using
a learned index and boosts the scan performance by grouping
KV data on SSD.

Current optimizations focus more on general-purpose KV
stores rather than file system metadata. PhatKV can achieve a
higher efficiency if it is designed with the characteristics of file
system metadata workloads in consideration. Moreover, some
optimizations are orthogonal to PhatKV, including hierarchical
storage, cache algorithms, and index structures. PhatKV may
achieve a better performance with these technologies.

VII. CONCLUSION

In this paper, we reveal the KV workload characteristics of
the file system metadata operations and the limitations of the
widely used LSM-Tree when used as the storage engine for file
system metadata on SSD. We propose PhatKV, which aims to
work as the metadata engine of KV-based file systems. PhatKV
leverages a piece hash index and a three-stage aggregation to
enable efficient file system metadata operations. Additionally,



PhatKV also leverages the new asynchronous io uring inter-
face to realize more efficient SSD IOs. The results demon-
strate that PhatKV outperforms LevelDB and RocksDB by
1.2× and 7.9×, respectively. It also achieves 1.2× and 1.5×
higher throughput compared to KVell, and a 4× less memory
footprint compared to KVell. Moreover, the file system using
PhatKV achieves 1.6× and 3.1× improvements on metadata
operations than that using LevelDB and RocksDB.
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